U.S. EPA. Guidelines for Human Exposure Assessment; Washington, D.C., 2019. https://www.epa.gov/risk/guidelines-human-exposure-assessment

NIEHS. Exposure Science. 2023. https://www.niehs.nih.gov/health/topics/science/exposure/index.cfm (Accessed 11 October 2023)

NRC. Exposure Science in the 21st Century: A Vision and a Strategy; Washington, D.C., 2012

Tulve NS, Guiseppi-Elie A, Geller AM, Ward-Caviness CK, Paul SJ, Lavoie ET, et al. Redefining exposure science to advance research supporting cumulative impacts, environmental justice, and decision-making. J Expo Sci Environ Epidemiol. 2023;33:843–5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vandenberg LN, Rayasam SDG, Axelrad DA, Bennett DH, Brown P, Carignan CC, et al. Addressing systemic problems with exposure assessments to protect the public’s health. Environ Health. 2023;21:121.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tulve NS, Geller AM, Hagerthey S, Julius SH, Lavoie ET, Mazur SL, et al. Challenges and opportunities for research supporting cumulative impact assessments at the United States environmental protection agency’s office of research and development. Lancet Reg Health Am. 2024;30:100666.

PubMed 
PubMed Central 

Google Scholar
 

NASEM. Transforming EPA Science to Meet Today’s and Tomorrow’s Challenges; Washington, DC, 2023

U.S. EPA. About the Office of Research and Development (ORD). 2023. https://www.epa.gov/aboutepa/about-office-research-and-development-ord (Accessed 2 February 2024)

U.S. EPA, Learn about One Health, https://www.epa.gov/one-health/learn-about-one-health (Accessed 23 September 2024).

Zartarian V, Xue J, Tornero-Velez R, Brown J. Children’s lead exposure: A multimedia modeling analysis to guide public health decision-making. Environ Health Perspect. 2017;125:097009.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stanek LW, Xue J, Lay CR, Helm EC, Schock M, Lytle DA, et al. Modeled impacts of drinking water Pb reduction scenarios on children’s exposures and blood lead levels. Environ Sci Technol. 2020;54:9474–82.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hubbard H, Özkaynak H, Glen G, Cohen J, Thomas K, Phillips L, et al. Model-based predictions of soil and dust ingestion rates for U.S. adults using the stochastic human exposure and dose simulation soil and dust model. Sci Total Environ. 2022;846:157501.

Article 
CAS 
PubMed 

Google Scholar
 

Özkaynak H, Cohen J, Hubbard H, Thomas K, Phillips L, Tulve N. Advancing methodologies used in trace element-based mass balance studies to separately estimate soil and dust ingestion rates for children. Environ Int. 2023;178:107983.

Article 
PubMed 

Google Scholar
 

Özkaynak H, Glen G, Cohen J, Hubbard H, Thomas K, Phillips L, et al. Model based prediction of age-specific soil and dust ingestion rates for children. J Expo Sci Environ Epidemiol. 2022;32:472–80.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Panagopoulos Abrahamsson D, Sobus JR, Ulrich EM, Isaacs K, Moschet C, Young TM, et al. A quest to identify suitable organic tracers for estimating children’s dust ingestion rates. J Expo Sci Environ Epidemiol. 2021;31:70–81.

Article 
CAS 
PubMed 

Google Scholar
 

Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 2020;22:2345–73.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Calafat AM, Kato K, Hubbard K, Jia T, Botelho JC, Wong LY. Legacy and alternative per- and polyfluoroalkyl substances in the U.S. general population: Paired serum-urine data from the 2013–2014 National Health and Nutrition Examination Survey. Environ Int. 2019;131:105048.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Evich MG, Davis MJB, McCord JP, Acrey B, Awkerman JA, Knappe DRU, et al. Per- and polyfluoroalkyl substances in the environment. Science. 2022;375:eabg9065.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

DeLuca NM, Angrish M, Wilkins A, Thayer K, Cohen Hubal EA. Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: a systematic review protocol. Environ Int. 2021;146:106308.

Article 
CAS 
PubMed 

Google Scholar
 

DeLuca NM, Minucci JM, Mullikin A, Slover R, Cohen Hubal EA. Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: a systematic review. Environ Int. 2022;162:107149.

Article 
CAS 
PubMed 

Google Scholar
 

Holder C, DeLuca N, Luh J, Alexander P, Minucci JM, Vallero DA, et al. Systematic evidence mapping of potential exposure pathways for per- and polyfluoroalkyl substances based on measured occurrence in multiple media. Environ Sci Technol. 2023;57:5107–16.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

DeLuca NM, Thomas K, Mullikin A, Slover R, Stanek LW, Pilant AN, et al. Geographic and demographic variability in serum PFAS concentrations for pregnant women in the United States. J Exposure Sci Environ Epidemiol. 2023;33:710–24.

Article 

Google Scholar
 

Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Minucci JM, Purucker ST, Isaacs KK, Wambaugh JF, Phillips KA. A data-driven approach to estimating occupational inhalation exposure using workplace compliance data. Environ Sci Technol. 2023;57:5947–56.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

U.S. EPA. Southwest Rockford Revitalization Rapid Health Impact Assessment (Final Report); U.S. Environmental Protection Agency, Washington, D.C., 2022. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=354883

Melnyk, LJ, Lazorchak, JM, Kusnierz, DH, Perlman, GD, Lin, J, Venkatapathy, R, et al. One Health assessment of persistent organic chemicals and PFAS for consumption of restored anadromous fish. J Expo Sci Environ Epidemiol. 2023. https://doi.org/10.1038/s41370-023-00620-3

Melnyk LJ, Lin J, Kusnierz DH, Pugh K, Durant JT, Suarez-Soto RJ, et al. Risks from mercury in anadromous fish collected from Penobscot River, Maine. Sci Total Environ. 2021;781:146691.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

ATSDR. Health Consultation – Public Comment Version Review of Anadromous Fish: Penobscot River Penobscot Indian Nation Indian Island, Maine. Atlanta, GA: U.S. Department of Health and Human Services; 2021.


Google Scholar
 

Stover MA, Kusnierz DH, Melnyk LJ, Lazorchak JM, Perlman GD, Lin J. Tribal-focused participatory research that accentuates environmental justice and food security burdens impacting the Penobscot Nation tribal community. Environ Just 2024. https://doi.org/10.1089/env.2024.0034

WHO. World health statistics 2023: monitoring health for the SDGs, Sustainable Development Goals; Geneva, 2023. https://www.who.int/publications/i/item/9789240074323

Bhatnagar A. Environmental determinants of cardiovascular disease. Circ Res. 2017;121:162–80.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cohen Hubal EA, Reif DM, Slover R, Mullikin A, Little JC. Children’s environmental health: A systems approach for anticipating impacts from chemicals. Int J Environ Res Public Health. 2020;17:8337.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19:255–65.

Article 
PubMed 

Google Scholar
 

Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O’Reilly S, Brauer M, et al. Pollution and health: a progress update. Lancet Planet Health. 2022;6:e535–e547.

Article 
PubMed 

Google Scholar
 

Hines RN, Sargent D, Autrup H, Birnbaum LS, Brent RL, Doerrer NG, et al. Approaches for assessing risks to sensitive populations: lessons learned from evaluating risks in the pediatric population. Toxicol Sci. 2010;113:4–26.

Article 
CAS 
PubMed 

Google Scholar
 

Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8:226–38.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Selevan SG, Kimmel CA, Mendola P. Identifying critical windows of exposure for children’s health. Environ Health Perspect. 2000;108:451–5.

PubMed 
PubMed Central 

Google Scholar
 

Wright RO. Environment, susceptibility windows, development, and child health. Curr Opin Pediatr. 2017;29:211–7.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rappaport SM, Smith MT. Environment and disease risks. Science. 2010;330:460–1.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Figtree GA, Vernon ST, Harmer JA, Gray MP, Arnott C, Bachour E, et al. Clinical Pathway for coronary atherosclerosis in patients without conventional modifiable risk factors: JACC state-of-the-art review. J Am Coll Cardiol. 2023;82:1343–59.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cohen Hubal EA, Moya J, Selevan SG. A lifestage approach to assessing children’s exposure. Birth Defects Res Part B Devel Reprod Toxicol. 2008;83:522–9.

Article 
CAS 

Google Scholar
 

Pellizzari ED, Woodruff TJ, Boyles RR, Kannan K, Beamer PI, Buckley JP, et al. Identifying and prioritizing chemicals with uncertain burden of exposure: Opportunities for biomonitoring and health-related research. Environ Health Perspect. 2019;127:126001.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tulve N, Ruiz J, Lichtveld K, Darney S, Quackenboss J. Development of a conceptual framework depicting a child’s total (built, natural, social) environment in order to optimize health and well-being. J Environ Health Sci. 2016;2:1–8.

Article 

Google Scholar
 

Vermeulen R, Schymanski EL, Barabási AL, Miller GW. The exposome and health: Where chemistry meets biology. Science. 2020;367:392–6.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wild CP. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14:1847–50.

Article 
CAS 

Google Scholar
 

Chung MK, Rappaport SM, Wheelock CE, Nguyen VK, van der Meer TP, Miller GW, et al. Utilizing a biology-driven approach to map the exposome in health and disease: An essential investment to drive the next generation of environmental discovery. Environ Health Perspect. 2021;129:85001.

Article 
PubMed 

Google Scholar
 

Miller GW, Jones DP. The nature of nurture: refining the definition of the exposome. Toxicol Sci. 2013;137:1–2.

Article 
PubMed 
PubMed Central 

Google Scholar
 

DeFur PL, Evans GW, Cohen Hubal EA, Kyle AD, Morello-Frosch RA, Williams DR. Vulnerability as a function of individual and group resources in cumulative risk assessment. Environ Health Perspect. 2007;115:817–24.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Levin, R, Villanueva, CM, Beene, D, Cradock, AL, Donat-Vargas, C, Lewis, J, et al. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. J Expo Sci Environ Epidemiol. 2024;34:3–22.

Casey JA, Daouda M, Babadi RS, Do V, Flores NM, Berzansky I, et al. Methods in Public Health Environmental Justice Research: a Scoping Review from 2018 to 2021. Curr Environ Health Rep. 2023;10:312–36.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hubal R, Cohen Hubal EA. Simulating patterns of life: More representative time-activity patterns that account for context. Environ Int. 2023;172:107753.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vineis P. Invited perspective: the mysterious case of social determinants of health. Environ Health Perspect. 2022;130:111303.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chaix B. Geographic life environments and coronary heart disease: A literature review, theoretical contributions, methodological updates, and a research agenda. Annu Rev Public Health. 2009;30:81–105.

Article 
PubMed 

Google Scholar
 

Ward-Caviness CK, Russell AG, Weaver AM, Slawsky E, Dhingra R, Kwee LC, et al. Accelerated epigenetic age as a biomarker of cardiovascular sensitivity to traffic-related air pollution. Aging. 2020;12:24141–55.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martenies SE, Zhang M, Corrigan AE, Kvit A, Shields T, Wheaton W, et al. Developing a national-scale exposure index for combined environmental hazards and social stressors and applications to the environmental influences on child health outcomes (ECHO) cohort. Int J Environ Res Public Health. 2023;20:6339.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Senier L, Brown P, Shostak S, Hanna B. The socio-exposome: advancing exposure science and environmental justice in a postgenomic era. Environ Sociol. 2017;3:107–21.

Article 
PubMed 

Google Scholar
 

Van Horne YO, Alcala CS, Peltier RE, Quintana PJE, Seto E, Gonzales M, et al. An applied environmental justice framework for exposure science. J Expo Sci Environ Epidemiol. 2022;3:1–11.

Nwanaji-Enwerem JC, Jackson CL, Ottinger MA, Cardenas A, James KA, Malecki KMC, et al. Adopting a “compound” exposome approach in environmental aging biomarker research: A call to action for advancing racial health equity. Environ Health Perspect. 2021;129:45001.

Article 
PubMed 

Google Scholar
 

Leonard A. The Story of Stuff. New York, NY: Simon & Schuster; 2011.


Google Scholar
 

IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC, Geneva, Switzerland, 2023, p 184. https://www.ipcc.ch/report/sixth-assessment-report-cycle

U.S. GCRP. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II; U.S. Global Change Research Program, Washington, D.C., 2018, p 1515. https://nca2018.globalchange.gov

Holm SM, Miller MD, Balmes JR. Health effects of wildfire smoke in children and public health tools: a narrative review. J Expo Sci Environ Epidemiol. 2021;31:1–20.

Article 
PubMed 

Google Scholar
 

Weaver CP, Miller CA. A framework for climate change-related research to inform environmental protection. Environ Manag. 2019;64:245–57.

Article 
CAS 

Google Scholar
 

U.S. EPA. Climate Change and Social Vulnerability in the United States: A Focus on Six Impacts; 2021. EPA 430-R-21-003. www.epa.gov/cira/social-vulnerability-report

Jain P, Castellanos-Acuna D, Coogan SCP, Abatzoglou JT, Flannigan MD. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat Clim Change. 2022;12:63–70.

Article 

Google Scholar
 

Cascio WE. Wildland fire smoke and human health. Sci Total Environ. 2018;624:586–95.

Article 
CAS 
PubMed 

Google Scholar
 

Mulliken JS, Hampshire KN, Rappold AG, Fung M, Babik JM, Doernberg SB. Risk of systemic fungal infections after exposure to wildfires: a population-based, retrospective study in California. Lancet Planet Health. 2023;7:e381–e386.

Article 
PubMed 

Google Scholar
 

Pascoe EL, Plourde BT, Lopéz-Perez AM, Foley JE. Response of small mammal and tick communities to a catastrophic wildfire and implications for tick-borne pathogens. J Vector Ecol. 2020;45:269–84.

Article 
PubMed 

Google Scholar
 

Paul MJ, LeDuc SD, Lassiter MG, Moorhead LC, Noyes PD, Leibowitz SG. Wildfire induces changes in receiving waters: A review with considerations for water quality management. Water Resour Res. 2022;58:1–28.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

U.S. GSA. Sustainable Design. 2023. https://www.gsa.gov/real-estate/design-and-construction/sustainability/sustainable-design (Accessed 2 February 2024)

U.S. GSA. Buildings and Health. 2024. https://sftool.gov/learn/about/576/buildings-health (Accessed 2 February 2024)

Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Sci Environ Epidemiol. 2001;11:231–52.

Article 
CAS 

Google Scholar
 

Matz CJ, Stieb DM, Davis K, Egyed M, Rose A, Chou B, et al. Effects of age, season, gender and urban-rural status on time-activity: Canadian human activity pattern survey 2 (CHAPS 2). Int J Environ Res Public Health. 2014;11:2108–24.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Weitekamp CA, Phillips LJ, Carlson LM, DeLuca NM, Cohen Hubal EA, Lehmann GM. A state-of-the-science review of polychlorinated biphenyl exposures at background levels: Relative contributions of exposure routes. Sci Total Environ. 2021;776:145912.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dong T, Zhang Y, Jia S, Shang H, Fang W, Chen D, et al. Human indoor exposome of chemicals in dust and risk prioritization using EPA’s ToxCast Database. Environ Sci Technol. 2019;53:7045–54.

Article 
CAS 
PubMed 

Google Scholar
 

Kvasnicka J, Cohen Hubal E, Ladan J, Zhang X, Diamond ML. Transient multimedia model for investigating the influence of indoor human activities on exposure to SVOCs. Environ Sci Technol. 2020;54:10772–82.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kvasnicka J, Cohen Hubal EA, Siegel JA, Scott JA, Diamond ML. Modeling clothing as a vector for transporting airborne particles and pathogens across indoor microenvironments. Environ Sci Technol. 2022;56:5641–52.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

NASEM. Why Indoor Chemistry Matters; In National Academies Press (US): Washington (DC), 2022; Vol. The National Academies Collection: Reports funded by National Institutes of Health.

Holder C, Cohen Hubal EA, Luh J, Lee MG, Melnyk LJ, Thomas K. Systematic evidence mapping of potential correlates of exposure for per- and poly-fluoroalkyl substances (PFAS) based on measured occurrence in biomatrices and surveys of dietary consumption and product use. Int J Hyg Environ Health. 2024;259:114384.

Article 
CAS 
PubMed 

Google Scholar
 

DeLuca NM, Boettger J, Miller KE, Fuller C, Minucci JM, Ashley PJ, et al. Per- and polyfluoroalkyl substances (PFAS) in paired tap water and house dust from United States homes. Indoor Environ. 2024;1:100033.

Article 

Google Scholar
 

Minucci JM, DeLuca NM, Durant JT, Goodwin B, Kowalski P, Scruton K, et al. Linking exposure to per- and polyfluoroalkyl substances (PFAS) in house dust and biomonitoring data in eight impacted communities. Environ Int. 2024;188:108756.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

DeLuca NM, Mullikin A, Brumm P, Rappold AG, Cohen Hubal E. Using geospatial data and random forest To predict PFAS contamination in fish tissue in the Columbia River Basin, United States. Environ Sci Technol. 2023;57:14024–35.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wan W, Li V, Chin MH, Faldmo DN, Hoefling E, Proser M, et al. Development of PRAPARE social determinants of health clusters and correlation with diabetes and hypertension Outcomes. J Am Board Fam Med. 2022;35:668–79.

Article 
PubMed 

Google Scholar
 

Tulve NS, Donovan J, Thomas K. Preliminary Analysis of Chemical and Non-Chemical Stressors Collected from Mother-Child Pairs in the National Children’s Study. Kaosiung, Taiwan: International Society for Environmental Epidemiology; 2023.

Book 

Google Scholar
 

Lichtveld K, Thomas K, Tulve NS. Chemical and non-chemical stressors affecting childhood obesity: a systematic scoping review. J Expo Sci Environ Epidemiol. 2018;28:1–12.

Article 
CAS 
PubMed 

Google Scholar
 

Augustine SAJ, Simmons KJ, Eason TN, Griffin SM, Curioso CL, Wymer LJ, et al. Statistical approaches to developing a multiplex immunoassay for determining human exposure to environmental pathogens. J Immunol Methods. 2015;425:1–9.

Article 
CAS 
PubMed 

Google Scholar
 

Griffin SM, Chen IM, Fout GS, Wade TJ, Egorov AI. Development of a multiplex microsphere immunoassay for the quantitation of salivary antibody responses to selected waterborne pathogens. J Immunol Methods. 2011;364:83–93.

Article 
CAS 
PubMed 

Google Scholar
 

Griffin SM, Converse RR, Leon JS, Wade TJ, Jiang X, Moe CL, et al. Application of salivary antibody immunoassays for the detection of incident infections with Norwalk virus in a group of volunteers. J Immunol Methods. 2015;424:53–63.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Breen M, Seppanen C, Isakov V, Arunachalam S, Breen M, Samet J, et al. Development of TracMyAir smartphone application for modeling exposures to ambient PM2.5 and ozone. Int J Environ Res Public Health. 2019;16:3468.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brandon N, Dionisio KL, Isaacs K, Tornero-Velez R, Kapraun D, Setzer RW, et al. Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence. J Expo Sci Environ Epidemiol. 2020;30:184–93.

Article 
PubMed 

Google Scholar
 

Brandon N, Price PS. Calibrating an agent-based model of longitudinal human activity patterns using the Consolidated Human Activity Database. J Expo Sci Environ Epidemiol. 2020;30:194–204.

Article 
PubMed 

Google Scholar
 

U. S. EPA. Fact Sheet: Columbia river Basin Restoration Working Group; In U.S. Environmental Protection Agency: 2022. https://www.epa.gov/system/files/documents/2022-02/crbrpwg-fact-sheet-2022.pdf (Accessed 24 July 2024)

Nilsen E, Muensterman D, Carini L, Waite I, Payne S, Field JA, et al. Target and suspect per- and polyfluoroalkyl substances in fish from an AFFF-impacted waterway. Sci Total Environ. 2024;906:167798.

Article 
CAS 
PubMed 

Google Scholar
 

U. S. EPA. The Total Exposure Assessment Methodology (TEAM) Study; EPA/600/6-87/002; U.S. Environmental Protection Agency, Office of Acid Deposition, E. M. a. Q. A., Washington, D.C., 1987

U. S. EPA. Cumulative Impacts Research: Recommendations for EPA’s Office of Research and Development; Washington, D.C., 2022

Sexton K, Kleffman DE, Callahan MA. An introduction to the National Human Exposure Assessment Survey (NHEXAS) and related phase I field studies. J Expo Anal Environ Epidemiol. 1995;5:229–32.

CAS 
PubMed 

Google Scholar