MacMynowski, D. G. & Tziperman, E. Two-way feedback interaction between the thermohaline and wind-driven circulations. J. Phys. Oceanogr. 36, 914–929 (2006).


Google Scholar
 

Timmermann, A. & Goosse, H. Is the wind stress forcing essential for the meridional overturning circulation? Geophys. Res. Lett. 31, L20705 (2004).


Google Scholar
 

Yang, H., Wang, K., Dai, H., Wang, Y. & Li, Q. Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion. Clim. Dyn. 46, 3387–3403 (2016).


Google Scholar
 

Bryden, H. L., Longworth, H. R. & Cunningham, S. A. Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438, 655–657 (2005).

CAS 

Google Scholar
 

Häkkinen, S. & Rhines, P. B. Decline of subpolar North Atlantic circulation during the 1990s. Science 304, 555–559 (2004).


Google Scholar
 

Böning, C. W., Scheinert, M., Dengg, J., Biastoch, A. & Funk, A. Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett. 33, L21S01 (2006).


Google Scholar
 

De Coetlogon, G. et al. Gulf Stream variability in five oceanic general circulation models. J. Phys. Oceanogr. 36, 2119–2135 (2006).


Google Scholar
 

Larson, S. M., Buckley, M. W. & Clement, A. C. Extracting the buoyancy-driven Atlantic meridional overturning circulation. J. Clim. 33, 4697–4714 (2020).


Google Scholar
 

Ma, X. et al. Evolving AMOC multidecadal variability under different CO2 forcings. Clim. Dyn. 57, 593–610 (2021).


Google Scholar
 

Zhang, R. Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett. 35, L20705 (2008).


Google Scholar
 

Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).


Google Scholar
 

Joyce, T. M. & Zhang, R. On the path of the Gulf Stream and the Atlantic meridional overturning circulation. J. Clim. 23, 3146–3154 (2010).


Google Scholar
 

Wen, N., Frankignoul, C. & Gastineau, G. Active AMOC–NAO coupling in the IPSL-CM5A-MR climate model. Clim. Dyn. 47, 2105–2119 (2016).


Google Scholar
 

Sun, J., Latif, M. & Park, W. Subpolar gyre–AMOC–atmosphere interactions on multidecadal timescales in a version of the Kiel climate model. J. Clim. 34, 6583–6602 (2021).


Google Scholar
 

Smeed, D. A. et al. The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett. 45, 1527–1533 (2018).


Google Scholar
 

Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).


Google Scholar
 

Thornalley, D. J. et al. Anomalously weak Labrador sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

CAS 

Google Scholar
 

Caesar, L., McCarthy, G., Thornalley, D., Cahill, N. & Rahmstorf, S. Current Atlantic meridional overturning circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).

CAS 

Google Scholar
 

Weaver, A. J. et al. Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys. Res. Lett. 39, L20709 (2012).


Google Scholar
 

Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).


Google Scholar
 

Tietsche, S. et al. The importance of North Atlantic ocean transports for seasonal forecasts. Clim. Dyn. 55, 1995–2011 (2020).


Google Scholar
 

Chafik, L., Nilsen, J. E. Ø., Dangendorf, S., Reverdin, G. & Frederikse, T. North Atlantic ocean circulation and decadal sea level change during the altimetry era. Sci. Rep. 9, 1041 (2019).


Google Scholar
 

Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. 121, 4928–4945 (2016).


Google Scholar
 

Yang, H. et al. Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett. 47, e2019GL085868 (2020).


Google Scholar
 

Liu, W., Fedorov, A. V., Xie, S.-P. & Hu, S. Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv. 6, eaaz4876 (2020).


Google Scholar
 

Gervais, M., Shaman, J. & Kushnir, Y. Impacts of the North Atlantic warming hole in future climate projections: mean atmospheric circulation and the North Atlantic jet. J. Clim. 32, 2673–2689 (2019).


Google Scholar
 

Frankignoul, C., de Coëtlogon, G., Joyce, T. M. & Dong, S. Gulf Stream variability and ocean–atmosphere interactions. J. Phys. Oceanogr. 31, 3516–3529 (2001).


Google Scholar
 

Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic ocean overturning circulation. Nature 556, 191–196 (2018).

CAS 

Google Scholar
 

Marcello, F., Tonelli, M., Ferrero, B. & Wainer, I. Projected Atlantic overturning slowdown is to be compensated by a strengthened South Atlantic subtropical gyre. Commun. Earth Environ. 4, 92 (2023).


Google Scholar
 

Kawase, M. Establishment of deep ocean circulation driven by deep-water production. J. Phys. Oceanogr. 17, 2294–2317 (1987).


Google Scholar
 

Zhang, R. Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett. 37, L16703 (2010).


Google Scholar
 

Huang, R. X., Cane, M. A., Naik, N. & Goodman, P. Global adjustment of the thermocline in response to deepwater formation. Geophys. Res. Lett. 27, 759–762 (2000).


Google Scholar
 

Johnson, H. L. & Marshall, D. P. A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr. 32, 1121–1132 (2002).


Google Scholar
 

Cessi, P., Bryan, K. & Zhang, R. Global seiching of thermocline waters between the Atlantic and the Indian–Pacific ocean basins. Geophys. Res. Lett. 31, L04302 (2004).


Google Scholar
 

Peng, Q. et al. Surface warming-induced global acceleration of upper ocean currents. Sci. Adv. 8, eabj8394 (2022).


Google Scholar
 

Chen, C., Liu, W. & Wang, G. Understanding the uncertainty in the 21st century dynamic sea level projections: The role of the AMOC. Geophys. Res. Lett. 46, 210–217 (2019).


Google Scholar
 

Zhang, L., Delworth, T. L. & Zeng, F. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern ocean. Clim. Dyn. 48, 2065–2085 (2017).


Google Scholar
 

Peng, Q. et al. Indonesian throughflow slowdown under global warming: remote AMOC effect versus regional surface forcing. J. Clim. 36, 1301–1318 (2023).


Google Scholar
 

Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun. 12, 3659 (2021).

CAS 

Google Scholar
 

Bellomo, K. & Mehling, O. Impacts and state-dependence of AMOC weakening in a warming climate. Geophys. Res. Lett. 51, e2023GL107624 (2024).


Google Scholar
 

Köhl, A. Evaluating the GECCO3 1948–2018 ocean synthesis–a configuration for initializing the MPI-ESM climate model. Q. J. R. Meteorol. Soc. 146, 2250–2273 (2020).


Google Scholar
 

Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).


Google Scholar
 

Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).


Google Scholar
 

Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).


Google Scholar
 

Liu, W., Duarte Cavalcante Pinto, D., Fedorov, A. & Zhu, J. The impacts of a weakened Atlantic meridional overturning circulation on ENSO in a warmer climate. Geophys. Res. Lett. 50, e2023GL103025 (2023).


Google Scholar
 

Ren, X. & Liu, W. The role of a weakened Atlantic meridional overturning circulation in modulating marine heatwaves in a warming climate. Geophys. Res. Lett. 48, e2021GL095941 (2021).


Google Scholar
 

Lee, Y.-C. & Liu, W. The weakened Atlantic meridional overturning circulation diminishes recent Arctic sea ice loss. Geophys. Res. Lett. 50, e2023GL105929 (2023).


Google Scholar
 

Lee, Y.-C., Liu, W., Fedorov, A. V., Feldl, N. & Taylor, P. C. Impacts of Atlantic meridional overturning circulation weakening on Arctic amplification. Proc. Natl Acad. Sci. USA 121, e2402322121 (2024).

CAS 

Google Scholar
 

Kay, J. E. et al. The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).


Google Scholar
 

Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).


Google Scholar
 

Ziehn, T. et al. The Australian earth system model: access-esm1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).


Google Scholar
 

Gutjahr, O. et al. Max Planck institute earth system model (MPI-ESM1. 2) for the high- resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).

CAS 

Google Scholar