Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).
Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).
Patz, J. A., Frumkin, H., Holloway, T., Vimont, D. J. & Haines, A. Climate Change: challenges and opportunities for Global Health. JAMA 312, 1565–1580 (2014).
Malhi, G. S., Kaur, M. & Kaushik, P. Impact of Climate Change on Agriculture and its mitigation strategies: a review. Sustainability 13, 1318 (2021).
Weckroth, M. & Ala-Mantila, S. Socioeconomic geography of climate change views in Europe. Glob. Environ. Change. 72, 102453 (2022).
Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).
Zeng, Z. et al. Increased risk of flash droughts with raised concurrent hot and dry extremes under global warming. Npj Clim. Atmos. Sci. 6, 1–12 (2023).
Orth, R., Zscheischler, J. & Seneviratne, S. I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 6, 28334 (2016).
Hanel, M. et al. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 8, 9499 (2018).
Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
Blauhut, V. et al. Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management. Nat. Hazards Earth Syst. Sci. 22, 2201–2217 (2022).
Hari, V., Rakovec, O., Markonis, Y., Hanel, M. & Kumar, R. Increased future occurrences of the exceptional 2018–2019 central European drought under global warming. Sci. Rep. 10, 12207 (2020).
Rousi, E. et al. The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective. Nat. Hazards Earth Syst. Sci. 23, 1699–1718 (2023).
Eckstein, D., Künzel, V., Schäfer, L. & Winges, M. GLOBAL CLIMATE RISK INDEX 2020. Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2018 and 1999 to 2018 (Germanwatch e.V., 2018).
an der Heiden, M. et al. Heat-related mortality. Dtsch. Arztebl Int. 117, 603–609 (2020).
Winklmayr, C., Muthers, S., Niemann, H. & Mücke, H. G. & an Der Heiden, M. Heat-related mortality in Germany from 1992 to 2021. Dtsch. Arztebl Int. 119, 451–457 (2022).
Huber, V. et al. Heat-related mortality in the Extreme Summer of 2022. Dtsch. Arztebl Int. 121, 79–85 (2024).
Syrbe, R. U., Meier, S., Moyzes, M., Dworczyk, C. & Grunewald, K. Assessment and Monitoring of Local Climate Regulation in cities by Green Infrastructure—A National Ecosystem Service Indicator for Germany. Land 13, 689 (2024).
Gohr, C., Blumröder, J. S., Sheil, D. & Ibisch, P. L. Quantifying the mitigation of temperature extremes by forests and wetlands in a temperate landscape. Ecol. Inf. 66, 101442 (2021).
Weiss, F., Winter, S., Pflugmacher, D., Kolling, T. & Linde, A. Evidence for regional-scale declines in carabid beetles in old lowland beech forests following a period of severe drought. Landsc. Ecol. 39, 123 (2024).
Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).
Scharnweber, T., Smiljanic, M., Cruz-García, R., Manthey, M. & Wilmking, M. Tree growth at the end of the 21st century – the extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 15, 074022 (2020).
Rohner, B., Kumar, S., Liechti, K., Gessler, A. & Ferretti, M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Ind. 120, 106903 (2021).
Ibisch, P., Gohr, C., Mann, D. & Blumroeder, J. Der Wald in Deutschland Auf Dem Weg in Die Heißzeit. Vitalität, Schädigung Und Erwärmung in Den Extremsommern 2018–2020 (in German). doi: (2021). https://doi.org/10.13140/RG.2.2.31704.62724
Thonfeld, F. et al. A First Assessment of Canopy Cover loss in Germany’s forests after the 2018–2020 Drought years. Remote Sens. 14, 562 (2022).
Mann, D., Gohr, C., Blumröder, J. S. & Ibisch, P. L. Does fragmentation contribute to the forest crisis in Germany? Front. Forests Global Change 6, (2023).
Ibisch, P. & Blumroeder, J. Waldkrise als Wissenskrise als Risiko (in German). Universitas 888, 20–42 (2020).
Popkin, G. Forest fight. Science 374, 1184–1189 (2021).
Ibisch, P. Ein ökosystembasierter Ansatz für den Umgang Mit Der Waldkrise in Der Klimakrise (in German). Natur. und Landschaft. 97, 325–333 (2022).
Blumröder, J. S., May, F., Härdtle, W. & Ibisch, P. L. Forestry contributed to warming of forest ecosystems in northern Germany during the extreme summers of 2018 and 2019. Ecol. Solutions Evid. 2, e12087 (2021).
Krug, J., Koehl, M. & Kownatzki, D. Revaluing unmanaged forests for climate change mitigation. Carbon Balance Manag. 7, 11 (2012).
Luick, R. et al. Primeval, natural and commercial forests in the context biodiversity and climate protection. Part 1: functions for biodiversity and as carbon sinks and reservoirs. Naturschutz Und Landschaftsplanung. 53, 12–25 (2021).
Thom, D. et al. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agric. For. Meteorol. 291, 108066 (2020).
Antonucci, S. et al. What is known about the management of European Beech forests facing climate change? A review. Curr. Forestry Rep. 7, 321–333 (2021).
Norris, C., Hobson, P. & Ibisch, P. L. Microclimate and vegetation function as indicators of forest thermodynamic efficiency. J. Appl. Ecol. 49, 562–570 (2012).
Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).
Menge, J. H., Magdon, P., Wöllauer, S. & Ehbrecht, M. Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests. Landsc. Ecol. 38, 903–917 (2023).
Sabatini, F. M. et al. Where are Europe’s last primary forests? Divers. Distrib. 24, 1426–1439 (2018).
Vološčuk, I., Pichler, V. & Pichlerova, M. The Primeval Beech forests of the carpathians and ancient Beech forests of Germany: joint natural Heritage of Europe. Folia Oecol. 40, 295–303 (2013).
UNESCO. European Beech Forests – Germany. World heritage beech forest (2024). https://www.europeanbeechforests.org/world-heritage-beech-forests/germany
Jeschke, L. & Knapp, H. D. Nationalpark Jasmund: Weltnaturerbe auf Rügen (Natur + Text, 2019).
Fichtner, A. & Knapp, H. D. Beech Forests as a Joint Natural Heritage of Europe – a Synthesis (Bundesamt für Naturschutz (BfN), 2011).
Langer, E. et al. Naturalness of selected European beech forests reflected by fungal inventories: a first checklist of fungi of the UNESCO World Natural Heritage Kellerwald-Edersee National Park in Germany. Mycol. Progress. 14, 102 (2015).
Yu, P. et al. Global spatiotemporally continuous MODIS land surface temperature dataset. Sci. Data. 9, 143 (2022).
De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).
Mildrexler, D. J., Zhao, M. & Running, S. W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Research: Biogeosciences 116, (2011).
Gril, E. et al. Using airborne LiDAR to map forest microclimate temperature buffering or amplification. Remote Sens. Environ. 298, 113820 (2023).
Ibisch, P., Waldherr, M. G. & Knapp, H. D. Erweiterungsnominierung zu den „Buchenurwäldern Der Karpaten Und Alten Buchenwäldern deutschlands als paneuropäische UNESCO- Weltnaturerbestätte (in German). Natur. und Landschaft. 92, 109–118 (2017).
Hansen, M. C. et al. High-resolution global maps of 21st-Century forest cover change. Science 342, 850–853 (2013).
NASA. Satellites | Landsat Science. NASA (2021). https://landsat.gsfc.nasa.gov/satellites/
European Environment Agency. CORINE Land Cover 2018 (raster 100 m), Europe, 6-yearly – version 2020_20u1, May 2020. Eur. Environ. Agency. https://doi.org/10.2909/960998C1-1870-4E82-8051-6485205EBBAC (2019).
Tang, B., Zhao, X. & Zhao, W. Local effects of forests on temperatures across Europe. Remote Sens. 10, 529 (2018).
Google Earth Engine. Google (2024).
Deutscher Wetterdienst. DWD (2024). https://www.dwd.de/EN/ourservices/germanclimateatlas/explanations/elements/_functions/faqkarussel/heissetage.html
Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).
Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93 (2018).
Alademomi, A. S. et al. The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria. Appl. Geomat. 14, 299–314 (2022).
Chakraborty, T., Sarkar, S. K. & Morshed Md. M. Big data and remote sensing for multi-decadal drought impact assessment on Shorea robusta. Theor. Appl. Climatol. 148, 1587–1602 (2022).
Essaadia, A., Abdellah, A., Ahmed, A., Abdelouahed, F. & Kamal, E. The normalized difference vegetation index (NDVI) of the Zat valley, Marrakech: comparison and dynamics. Heliyon 8, e12204 (2022).
Ullah, W. et al. Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower himalayan region. Heliyon 9, e13322 (2023).
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M. & Trigo, I. F. Google Earth Engine Open-Source Code for Land Surface temperature estimation from the Landsat Series. Remote Sens. 12, 1471 (2020).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Esri, A. G. I. S. & Desktop Release 10.8.2. Redlands (Environmental Systems Research Institute, 2020).
Rakovec, O. et al. The 2018–2020 Multi-year Drought sets a New Benchmark in Europe. Earth’s Future. 10, e2021EF002394 (2022).
van der Woude, A. M. et al. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nat. Commun. 14, 6218 (2023).
Zimmermann, J., Hauck, M., Dulamsuren, C. & Leuschner, C. Climate warming-related growth decline affects Fagus sylvatica, but Not other broad-leaved tree species in central European mixed forests. Ecosystems 18, 560–572 (2015).
Braun, S., Hopf, S. E., Tresch, S., Remund, J. & Schindler, C. 37 years of Forest Monitoring in Switzerland: Drought effects on Fagus sylvatica. Front. Glob Change. 4, 765782 (2021).
Obladen, N. et al. Tree mortality of European beech and Norway spruce induced by 2018–2019 hot droughts in central Germany. Agric. For. Meteorol. 307, 108482 (2021).
Frei, E. R. et al. European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. Plant Biol. 24, 1132–1145 (2022).
Zhang, J., Shen, X., Wang, Y., Jiang, M. & Lu, X. Effects of Forest Changes on Summer Surface Temperature in Changbai Mountain, China. Forests 12, 1551 (2021).
Mausolf, K. et al. Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests. Sci. Total Environ. 642, 1201–1208 (2018).
Yang, Y. et al. Factors affecting long-term trends in Global NDVI. Forests 10, 372 (2019).
Yan, Z. et al. Spatial and temporal variation of NDVI and its driving factors based on geographical detector: a case study of Guanzhong plain urban agglomeration. Remote Sens. Applications: Soc. Environ. 32, 101030 (2023).
Mašek, J. et al. Shifting climatic responses of tree rings and NDVI along environmental gradients. Sci. Total Environ. 908, 168275 (2024).
Schall, P. et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 55, 267–278 (2017).
Bruun, H. H. & Heilmann-Clausen, J. What is unmanaged forest and how does it sustain biodiversity in landscapes with a long history of intensive forestry? J. Appl. Ecol. 58, 1813–1816 (2021).
Schall, P. et al. Among stand heterogeneity is key for biodiversity in managed beech forests but does not question the value of unmanaged forests: response to Bruun and Heilmann-Clausen (2021). J. Appl. Ecol. 58, 1817–1826 (2021).
Li, W. et al. Unmanaged naturally regenerating forests approach intact forest canopy structure but are susceptible to climate and human stress. One Earth 7, (2024).
Pimm, S. & Jenkins, C. Sustaining the Variety of Life. Sci. Am. 293, 66–73 (2005).
Costa, J. B. P., Melo, F. P. L., Santos, B. A. & Tabarelli, M. Reduced availability of large seeds constrains Atlantic forest regeneration. Acta Oecol. 39, 61–66 (2012).
Sousa, J. S. B., Longo, M. G. & Santos, B. A. Landscape patterns of primary production reveal agricultural benefits from forest conservation. Perspect. Ecol. Conserv. 17, 136–145 (2019).
Hathway, E. A. & Sharples, S. The interaction of rivers and urban form in mitigating the Urban Heat Island effect: a UK case study. Build. Environ. 58, 14–22 (2012).
Dugord, P. A., Lauf, S., Schuster, C. & Kleinschmit, B. Land use patterns, temperature distribution, and potential heat stress risk – the case study Berlin, Germany. Comput. Environ. Urban Syst. 48, 86–98 (2014).
Ren, Z., He, X., Pu, R. & Zheng, H. The impact of urban forest structure and its spatial location on urban cool island intensity. Urban Ecosyst. 21, 863–874 (2018).
Wu, J. et al. Seasonal variations and main influencing factors of the water cooling islands effect in Shenzhen. Ecol. Ind. 117, 106699 (2020).
Tan, X., Sun, X., Huang, C., Yuan, Y. & Hou, D. Comparison of cooling effect between green space and water body. Sustainable Cities Soc. 67, 102711 (2021).