Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).

Article 
ADS 

Google Scholar
 

Patz, J. A., Frumkin, H., Holloway, T., Vimont, D. J. & Haines, A. Climate Change: challenges and opportunities for Global Health. JAMA 312, 1565–1580 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Malhi, G. S., Kaur, M. & Kaushik, P. Impact of Climate Change on Agriculture and its mitigation strategies: a review. Sustainability 13, 1318 (2021).

Article 
CAS 

Google Scholar
 

Weckroth, M. & Ala-Mantila, S. Socioeconomic geography of climate change views in Europe. Glob. Environ. Change. 72, 102453 (2022).

Article 

Google Scholar
 

Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Zeng, Z. et al. Increased risk of flash droughts with raised concurrent hot and dry extremes under global warming. Npj Clim. Atmos. Sci. 6, 1–12 (2023).

Article 

Google Scholar
 

Orth, R., Zscheischler, J. & Seneviratne, S. I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 6, 28334 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hanel, M. et al. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 8, 9499 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic Appl. Ecol. 45, 86–103 (2020).

Article 

Google Scholar
 

Blauhut, V. et al. Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management. Nat. Hazards Earth Syst. Sci. 22, 2201–2217 (2022).

Article 
ADS 

Google Scholar
 

Hari, V., Rakovec, O., Markonis, Y., Hanel, M. & Kumar, R. Increased future occurrences of the exceptional 2018–2019 central European drought under global warming. Sci. Rep. 10, 12207 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rousi, E. et al. The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective. Nat. Hazards Earth Syst. Sci. 23, 1699–1718 (2023).

Article 
ADS 

Google Scholar
 

Eckstein, D., Künzel, V., Schäfer, L. & Winges, M. GLOBAL CLIMATE RISK INDEX 2020. Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2018 and 1999 to 2018 (Germanwatch e.V., 2018).

an der Heiden, M. et al. Heat-related mortality. Dtsch. Arztebl Int. 117, 603–609 (2020).


Google Scholar
 

Winklmayr, C., Muthers, S., Niemann, H. & Mücke, H. G. & an Der Heiden, M. Heat-related mortality in Germany from 1992 to 2021. Dtsch. Arztebl Int. 119, 451–457 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Huber, V. et al. Heat-related mortality in the Extreme Summer of 2022. Dtsch. Arztebl Int. 121, 79–85 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Syrbe, R. U., Meier, S., Moyzes, M., Dworczyk, C. & Grunewald, K. Assessment and Monitoring of Local Climate Regulation in cities by Green Infrastructure—A National Ecosystem Service Indicator for Germany. Land 13, 689 (2024).

Article 

Google Scholar
 

Gohr, C., Blumröder, J. S., Sheil, D. & Ibisch, P. L. Quantifying the mitigation of temperature extremes by forests and wetlands in a temperate landscape. Ecol. Inf. 66, 101442 (2021).

Article 

Google Scholar
 

Weiss, F., Winter, S., Pflugmacher, D., Kolling, T. & Linde, A. Evidence for regional-scale declines in carabid beetles in old lowland beech forests following a period of severe drought. Landsc. Ecol. 39, 123 (2024).

Article 

Google Scholar
 

Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).

Article 
ADS 

Google Scholar
 

Scharnweber, T., Smiljanic, M., Cruz-García, R., Manthey, M. & Wilmking, M. Tree growth at the end of the 21st century – the extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 15, 074022 (2020).

Article 
ADS 

Google Scholar
 

Rohner, B., Kumar, S., Liechti, K., Gessler, A. & Ferretti, M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Ind. 120, 106903 (2021).

Article 

Google Scholar
 

Ibisch, P., Gohr, C., Mann, D. & Blumroeder, J. Der Wald in Deutschland Auf Dem Weg in Die Heißzeit. Vitalität, Schädigung Und Erwärmung in Den Extremsommern 2018–2020 (in German). doi: (2021). https://doi.org/10.13140/RG.2.2.31704.62724

Thonfeld, F. et al. A First Assessment of Canopy Cover loss in Germany’s forests after the 2018–2020 Drought years. Remote Sens. 14, 562 (2022).

Article 
ADS 

Google Scholar
 

Mann, D., Gohr, C., Blumröder, J. S. & Ibisch, P. L. Does fragmentation contribute to the forest crisis in Germany? Front. Forests Global Change 6, (2023).

Ibisch, P. & Blumroeder, J. Waldkrise als Wissenskrise als Risiko (in German). Universitas 888, 20–42 (2020).


Google Scholar
 

Popkin, G. Forest fight. Science 374, 1184–1189 (2021).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Ibisch, P. Ein ökosystembasierter Ansatz für den Umgang Mit Der Waldkrise in Der Klimakrise (in German). Natur. und Landschaft. 97, 325–333 (2022).


Google Scholar
 

Blumröder, J. S., May, F., Härdtle, W. & Ibisch, P. L. Forestry contributed to warming of forest ecosystems in northern Germany during the extreme summers of 2018 and 2019. Ecol. Solutions Evid. 2, e12087 (2021).

Article 

Google Scholar
 

Krug, J., Koehl, M. & Kownatzki, D. Revaluing unmanaged forests for climate change mitigation. Carbon Balance Manag. 7, 11 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Luick, R. et al. Primeval, natural and commercial forests in the context biodiversity and climate protection. Part 1: functions for biodiversity and as carbon sinks and reservoirs. Naturschutz Und Landschaftsplanung. 53, 12–25 (2021).

Article 

Google Scholar
 

Thom, D. et al. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agric. For. Meteorol. 291, 108066 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Antonucci, S. et al. What is known about the management of European Beech forests facing climate change? A review. Curr. Forestry Rep. 7, 321–333 (2021).

Article 

Google Scholar
 

Norris, C., Hobson, P. & Ibisch, P. L. Microclimate and vegetation function as indicators of forest thermodynamic efficiency. J. Appl. Ecol. 49, 562–570 (2012).

Article 

Google Scholar
 

Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Menge, J. H., Magdon, P., Wöllauer, S. & Ehbrecht, M. Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests. Landsc. Ecol. 38, 903–917 (2023).

Article 

Google Scholar
 

Sabatini, F. M. et al. Where are Europe’s last primary forests? Divers. Distrib. 24, 1426–1439 (2018).

Article 

Google Scholar
 

Vološčuk, I., Pichler, V. & Pichlerova, M. The Primeval Beech forests of the carpathians and ancient Beech forests of Germany: joint natural Heritage of Europe. Folia Oecol. 40, 295–303 (2013).


Google Scholar
 

UNESCO. European Beech Forests – Germany. World heritage beech forest (2024). https://www.europeanbeechforests.org/world-heritage-beech-forests/germany

Jeschke, L. & Knapp, H. D. Nationalpark Jasmund: Weltnaturerbe auf Rügen (Natur + Text, 2019).

Fichtner, A. & Knapp, H. D. Beech Forests as a Joint Natural Heritage of Europe – a Synthesis (Bundesamt für Naturschutz (BfN), 2011).

Langer, E. et al. Naturalness of selected European beech forests reflected by fungal inventories: a first checklist of fungi of the UNESCO World Natural Heritage Kellerwald-Edersee National Park in Germany. Mycol. Progress. 14, 102 (2015).

Article 

Google Scholar
 

Yu, P. et al. Global spatiotemporally continuous MODIS land surface temperature dataset. Sci. Data. 9, 143 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).

Article 
ADS 

Google Scholar
 

Mildrexler, D. J., Zhao, M. & Running, S. W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Research: Biogeosciences 116, (2011).

Gril, E. et al. Using airborne LiDAR to map forest microclimate temperature buffering or amplification. Remote Sens. Environ. 298, 113820 (2023).

Article 

Google Scholar
 

Ibisch, P., Waldherr, M. G. & Knapp, H. D. Erweiterungsnominierung zu den „Buchenurwäldern Der Karpaten Und Alten Buchenwäldern deutschlands als paneuropäische UNESCO- Weltnaturerbestätte (in German). Natur. und Landschaft. 92, 109–118 (2017).


Google Scholar
 

Hansen, M. C. et al. High-resolution global maps of 21st-Century forest cover change. Science 342, 850–853 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

NASA. Satellites | Landsat Science. NASA (2021). https://landsat.gsfc.nasa.gov/satellites/

European Environment Agency. CORINE Land Cover 2018 (raster 100 m), Europe, 6-yearly – version 2020_20u1, May 2020. Eur. Environ. Agency. https://doi.org/10.2909/960998C1-1870-4E82-8051-6485205EBBAC (2019).

Article 

Google Scholar
 

Tang, B., Zhao, X. & Zhao, W. Local effects of forests on temperatures across Europe. Remote Sens. 10, 529 (2018).

Article 
ADS 

Google Scholar
 

Google Earth Engine. Google (2024).

Deutscher Wetterdienst. DWD (2024). https://www.dwd.de/EN/ourservices/germanclimateatlas/explanations/elements/_functions/faqkarussel/heissetage.html

Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93 (2018).

Article 

Google Scholar
 

Alademomi, A. S. et al. The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria. Appl. Geomat. 14, 299–314 (2022).

Article 

Google Scholar
 

Chakraborty, T., Sarkar, S. K. & Morshed Md. M. Big data and remote sensing for multi-decadal drought impact assessment on Shorea robusta. Theor. Appl. Climatol. 148, 1587–1602 (2022).

Article 
ADS 

Google Scholar
 

Essaadia, A., Abdellah, A., Ahmed, A., Abdelouahed, F. & Kamal, E. The normalized difference vegetation index (NDVI) of the Zat valley, Marrakech: comparison and dynamics. Heliyon 8, e12204 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ullah, W. et al. Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower himalayan region. Heliyon 9, e13322 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M. & Trigo, I. F. Google Earth Engine Open-Source Code for Land Surface temperature estimation from the Landsat Series. Remote Sens. 12, 1471 (2020).

Article 
ADS 

Google Scholar
 

R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

Esri, A. G. I. S. & Desktop Release 10.8.2. Redlands (Environmental Systems Research Institute, 2020).

Rakovec, O. et al. The 2018–2020 Multi-year Drought sets a New Benchmark in Europe. Earth’s Future. 10, e2021EF002394 (2022).

Article 
ADS 

Google Scholar
 

van der Woude, A. M. et al. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nat. Commun. 14, 6218 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Zimmermann, J., Hauck, M., Dulamsuren, C. & Leuschner, C. Climate warming-related growth decline affects Fagus sylvatica, but Not other broad-leaved tree species in central European mixed forests. Ecosystems 18, 560–572 (2015).

Article 
CAS 

Google Scholar
 

Braun, S., Hopf, S. E., Tresch, S., Remund, J. & Schindler, C. 37 years of Forest Monitoring in Switzerland: Drought effects on Fagus sylvatica. Front. Glob Change. 4, 765782 (2021).

Article 

Google Scholar
 

Obladen, N. et al. Tree mortality of European beech and Norway spruce induced by 2018–2019 hot droughts in central Germany. Agric. For. Meteorol. 307, 108482 (2021).

Article 

Google Scholar
 

Frei, E. R. et al. European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. Plant Biol. 24, 1132–1145 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, J., Shen, X., Wang, Y., Jiang, M. & Lu, X. Effects of Forest Changes on Summer Surface Temperature in Changbai Mountain, China. Forests 12, 1551 (2021).

Mausolf, K. et al. Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests. Sci. Total Environ. 642, 1201–1208 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yang, Y. et al. Factors affecting long-term trends in Global NDVI. Forests 10, 372 (2019).

Article 

Google Scholar
 

Yan, Z. et al. Spatial and temporal variation of NDVI and its driving factors based on geographical detector: a case study of Guanzhong plain urban agglomeration. Remote Sens. Applications: Soc. Environ. 32, 101030 (2023).

Article 

Google Scholar
 

Mašek, J. et al. Shifting climatic responses of tree rings and NDVI along environmental gradients. Sci. Total Environ. 908, 168275 (2024).

Article 
PubMed 

Google Scholar
 

Schall, P. et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 55, 267–278 (2017).

Article 

Google Scholar
 

Bruun, H. H. & Heilmann-Clausen, J. What is unmanaged forest and how does it sustain biodiversity in landscapes with a long history of intensive forestry? J. Appl. Ecol. 58, 1813–1816 (2021).

Article 

Google Scholar
 

Schall, P. et al. Among stand heterogeneity is key for biodiversity in managed beech forests but does not question the value of unmanaged forests: response to Bruun and Heilmann-Clausen (2021). J. Appl. Ecol. 58, 1817–1826 (2021).

Article 

Google Scholar
 

Li, W. et al. Unmanaged naturally regenerating forests approach intact forest canopy structure but are susceptible to climate and human stress. One Earth 7, (2024).

Pimm, S. & Jenkins, C. Sustaining the Variety of Life. Sci. Am. 293, 66–73 (2005).

Article 
PubMed 

Google Scholar
 

Costa, J. B. P., Melo, F. P. L., Santos, B. A. & Tabarelli, M. Reduced availability of large seeds constrains Atlantic forest regeneration. Acta Oecol. 39, 61–66 (2012).

Article 
ADS 

Google Scholar
 

Sousa, J. S. B., Longo, M. G. & Santos, B. A. Landscape patterns of primary production reveal agricultural benefits from forest conservation. Perspect. Ecol. Conserv. 17, 136–145 (2019).


Google Scholar
 

Hathway, E. A. & Sharples, S. The interaction of rivers and urban form in mitigating the Urban Heat Island effect: a UK case study. Build. Environ. 58, 14–22 (2012).

Article 

Google Scholar
 

Dugord, P. A., Lauf, S., Schuster, C. & Kleinschmit, B. Land use patterns, temperature distribution, and potential heat stress risk – the case study Berlin, Germany. Comput. Environ. Urban Syst. 48, 86–98 (2014).

Article 

Google Scholar
 

Ren, Z., He, X., Pu, R. & Zheng, H. The impact of urban forest structure and its spatial location on urban cool island intensity. Urban Ecosyst. 21, 863–874 (2018).

Article 

Google Scholar
 

Wu, J. et al. Seasonal variations and main influencing factors of the water cooling islands effect in Shenzhen. Ecol. Ind. 117, 106699 (2020).

Article 

Google Scholar
 

Tan, X., Sun, X., Huang, C., Yuan, Y. & Hou, D. Comparison of cooling effect between green space and water body. Sustainable Cities Soc. 67, 102711 (2021).

Article 

Google Scholar