Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, 541–545 (2018).
Soares-Filho, B. S. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).
Rajão, R. et al. The rotten apples of Brazil’s agribusiness. Science 369, 246–248 (2020).
Statistical Yearbook 2022 (FAO, 2022); https://doi.org/10.4060/cc2211en
Projeto Prodes—Monitoramento de Desmatamento na Amazônia Legal (INPE, 2023); http://terrabrasilis.dpi.inpe.br/downloads/
Loarie, S. R. et al. Direct impacts on local climate of sugar-cane expansion in Brazil. Nat. Clim. Change 1, 105–109 (2011).
Arantes, A. E., Ferreira, L. G. & Coe, M. T. The seasonal carbon and water balances of the Cerrado environment of Brazil: past, present, and future influences of land cover and land use. ISPRS J. Photogram. Remote Sens. 117, 66–78 (2016).
Spera, S. A., Winter, J. M. & Partridge, T. F. Brazilian maize yields negatively affected by climate after land clearing. Nat. Sustain. 3, 845–852 (2020).
Leite-Filho, A. T. et al. Climate risks to soy–maize double-cropping due to Amazon deforestation. Int. J. Climatol. 44, 1245–1261 (2024).
Rodrigues, A. A. et al. Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Glob. Change Biol. 28, 6807–6822 (2022).
Nóbrega, R. L. B. et al. Effects of conversion of native Cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE 12, e0179414 (2017).
Anache, J. A. A. et al. Hydrological trade-offs due to different land covers and land uses in the Brazilian Cerrado. Hydrol. Earth Syst. Sci. 23, 1263–1279 (2019).
Spera, S. A. et al. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405–3413 (2016).
Coe, M. T. et al. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105, 119–131 (2011).
Pires, G. & Costa, M. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett. 40, 3618–3623 (2013).
Xavier, A. C. et al. New improved Brazilian daily weather gridded data (1961–2020). Int. J. Climatol. 42, 8390–8404 (2022).
Ruane, A. C., Goldberg, R. & Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agric. For. Meteorol. 200, 233–248 (2015).
Bender, F. & Sentelhas, P. Solar radiation models and gridded databases to fill gaps in weather series and to project climate change in Brazil. Adv. Meteorol. https://doi.org/10.1155/2018/6204382 (2018).
Project—Collection 7 of Brazil’s Annual Coverage and Land Use Map Series (MapBiomas, 2022).
Leite-Filho, A. T. et al. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).
Liebmann, B. et al. Onset and Offset the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. J. Clim. 20, 2037–2050 (2007).
Atlas de Irrigação 2021 (Agência Nacional de Águas, 2021); https://portal1.snirh.gov.br/ana/apps/storymaps/stories/a874e62f27544c6a986da1702a911
Campos, J. O. Variabilidade da Precipitação no Cerrado e sua Correlação com a Mudança no uso da Terra. MSc thesis, Univ. Brasília (2018).
Van Dijkhorst, H., Kuepper, B. & Piotrowksi, M. Cerrado Deforestation Disrupts Water Systems and Poses Business Risks for Soy Producers (Chain Reaction Research, 2018); https://chainreactionresearch.com/wp-content/uploads/2018/10/Cerrado-DeforestationDisrupts-Water-Systems-and-Poses-Business-Risks-for-Soy-Producers3.pdf
Brumatti, L. M., Pires, G. F. & Santos, A. B. Challenges to the adaptation of double cropping agricultural systems in Brazil under changes in climate and land cover. Atmosphere 11, 1310 (2020).
Berlato, M. A., Matzenauer, R. & Bergamaschi, H. Evapotranspiração máxima da soja e relações com a evapotranspiração calculada pela equação de Penman. Evaporação do tanque “classe a” e radiação solar global. Agron. Sul. 22, 243–259 (1986).
Manual of Safety and Quality for Soy Crop (EMBRAPA, 2005); https://ainfo.cnptia.embrapa.br/digital/bitstream/item/25249/1/manualsegurancaqualidadeparaaculturadesoja.pdf
Andrade, C. L. T. et al. Simulação do Crescimento da Planta e da Dinâmica de Agua e Nitrogênio na Cultura Milho: 1. Fitomassa, Area Foliar e Produtividade de Grãos (EMBRAPA, 2006); https://ainfo.cnptia.embrapa.br/digital/bitstream/item/29773/1/Simulacao-crescimento-3.pdf
Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman & Hall/CRC, 2017).
Marengo, J. A. et al. Onset and end of the rainy season in the Brazilian Amazon Basin. J. Clim. 14, 833–852 (2001).
Spracklen, D., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).
Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Megacity precipitation sheds reveal teleconnected water security challenges. PLoS ONE 13, e0194311 (2018).
Swann, A. L., Fung, I. Y. & Chiang, J. C. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl Acad. Sci. USA 109, 712–716 (2012).
Liu, L. et al. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon during the dry season: relative importance of aerosol–cloud and aerosol–radiation interactions. Atmos. Chem. Phys. 20, 13283–13301 (2020).
Ribeiro, J. F. & Walter, B. M. T. in Cerrado: Ecologia e Flora (eds Sano, S. M. et al.) 153–212 (EMBRAPA, 2008).
Archer-Nicholls, S. E. et al. Aerosol–radiation–cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution. Atmos. Chem. Phys. 16, 5573–5594 (2016).
IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.O. et al.) (Cambridge Univ. Press, 2022).
Lathuilliere, M. et al. Rain-fed and irrigated cropland-atmosphere water fluxes and their implications for agricultural production in Southern Amazonia. Agric. For. Meteorol. 256–257, 407–419 (2018).
Oliveira, M. W. et al. Dry matter and nutrient cycling by soil cover plants in an intensive corn silage production system. Res. Soc. Dev. 11, e45611831008 (2022).
Plano de Ação para Prevenção e Controle do Desmatamento e das Queimadas no Bioma Cerrado (PPCerrado): 4a. Fase (2023 a 2027) (MMA, 2023).
Aragão, R. B. A. et al. To clear or not to clear: unpacking soy farmers’ decision-making on deforestation in Brazil’s Cerrado. Front. Sustain. Food Syst. 6, 942207 (2022).
Nunes, F. et al. Environmental Compliance of Coffee, Soy, and Forest Plantations in the State of Minas Gerais, Brazil (CSR/UFMG, 2024); https://csr.ufmg.br/csr/wp-content/uploads/2024/03/policy_conformidade_cadeias_sv_mg_13_03_24_en.pdf
Balanço do Código Florestal Vol. 1 (CSR, 2022); https://csr.ufmg.br/csr/wp-content/uploads/2022/08/boletim_cf_vol.1.pdf
Carvalho-Ribeiro, S. et al. Bioeconomic markets based on the use of native species (NS) in Brazil. Ecol. Econ. 218, 108124 (2024).
Produção Agrícola Municipal 2022 (IBGE, 2022); www.sidra.ibge.gov.br/bda/pesquisas/pam
Rochedo, P. et al. The threat of political bargaining to climate mitigation in Brazil. Nat. Clim. Change 8, 695–698 (2018).
Abrahão, G. M. & Costa, M. H. Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: the rise (and possible fall) of double cropping systems. Agric. For. Meteorol. 256, 32–45 (2018).
Cramér, H. Mathematical Methods of Statistics Ch. 21 (Princeton Univ. Press, 1946).
Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101 (1904).
Leite-Filho, A., Soares-Filho, B. & Oliveira, U. Climate anomalies due to Cerrado native vegetation loss [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.27273177.v1 (2024).
Leite-Filho, A., Soares-Filho, B. & Oliveira, U. Accumulated deforestation in the Cerrado biome (1999 to 2019) [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.27273294.v1 (2024).
Leite-Filho, A. Soybean and maize yield residuals in the Cerrado biome [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.27276621.v1 (2024).
Leite-Filho, A., Soares-Filho, B. & Oliveira, U. Intensification of climate change impacts on the Cerrado agriculture due to deforestation (Leite-Filho et al., 2024, Nat. Commun.). Figshare https://doi.org/10.6084/m9.figshare.27277701.v1 (2024).