Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, 541–545 (2018).

Article 

Google Scholar
 

Soares-Filho, B. S. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).

Article 
CAS 

Google Scholar
 

Rajão, R. et al. The rotten apples of Brazil’s agribusiness. Science 369, 246–248 (2020).

Article 

Google Scholar
 

Statistical Yearbook 2022 (FAO, 2022); https://doi.org/10.4060/cc2211en

Projeto Prodes—Monitoramento de Desmatamento na Amazônia Legal (INPE, 2023); http://terrabrasilis.dpi.inpe.br/downloads/

Loarie, S. R. et al. Direct impacts on local climate of sugar-cane expansion in Brazil. Nat. Clim. Change 1, 105–109 (2011).

Article 

Google Scholar
 

Arantes, A. E., Ferreira, L. G. & Coe, M. T. The seasonal carbon and water balances of the Cerrado environment of Brazil: past, present, and future influences of land cover and land use. ISPRS J. Photogram. Remote Sens. 117, 66–78 (2016).

Article 

Google Scholar
 

Spera, S. A., Winter, J. M. & Partridge, T. F. Brazilian maize yields negatively affected by climate after land clearing. Nat. Sustain. 3, 845–852 (2020).

Article 

Google Scholar
 

Leite-Filho, A. T. et al. Climate risks to soy–maize double-cropping due to Amazon deforestation. Int. J. Climatol. 44, 1245–1261 (2024).

Rodrigues, A. A. et al. Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Glob. Change Biol. 28, 6807–6822 (2022).

Article 
CAS 

Google Scholar
 

Nóbrega, R. L. B. et al. Effects of conversion of native Cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE 12, e0179414 (2017).

Article 

Google Scholar
 

Anache, J. A. A. et al. Hydrological trade-offs due to different land covers and land uses in the Brazilian Cerrado. Hydrol. Earth Syst. Sci. 23, 1263–1279 (2019).

Article 

Google Scholar
 

Spera, S. A. et al. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405–3413 (2016).

Article 

Google Scholar
 

Coe, M. T. et al. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105, 119–131 (2011).

Article 

Google Scholar
 

Pires, G. & Costa, M. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett. 40, 3618–3623 (2013).

Article 

Google Scholar
 

Xavier, A. C. et al. New improved Brazilian daily weather gridded data (1961–2020). Int. J. Climatol. 42, 8390–8404 (2022).

Article 

Google Scholar
 

Ruane, A. C., Goldberg, R. & Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agric. For. Meteorol. 200, 233–248 (2015).

Article 

Google Scholar
 

Bender, F. & Sentelhas, P. Solar radiation models and gridded databases to fill gaps in weather series and to project climate change in Brazil. Adv. Meteorol. https://doi.org/10.1155/2018/6204382 (2018).

Project—Collection 7 of Brazil’s Annual Coverage and Land Use Map Series (MapBiomas, 2022).

Leite-Filho, A. T. et al. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).

Article 
CAS 

Google Scholar
 

Liebmann, B. et al. Onset and Offset the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. J. Clim. 20, 2037–2050 (2007).

Article 

Google Scholar
 

Atlas de Irrigação 2021 (Agência Nacional de Águas, 2021); https://portal1.snirh.gov.br/ana/apps/storymaps/stories/a874e62f27544c6a986da1702a911

Campos, J. O. Variabilidade da Precipitação no Cerrado e sua Correlação com a Mudança no uso da Terra. MSc thesis, Univ. Brasília (2018).

Van Dijkhorst, H., Kuepper, B. & Piotrowksi, M. Cerrado Deforestation Disrupts Water Systems and Poses Business Risks for Soy Producers (Chain Reaction Research, 2018); https://chainreactionresearch.com/wp-content/uploads/2018/10/Cerrado-DeforestationDisrupts-Water-Systems-and-Poses-Business-Risks-for-Soy-Producers3.pdf

Brumatti, L. M., Pires, G. F. & Santos, A. B. Challenges to the adaptation of double cropping agricultural systems in Brazil under changes in climate and land cover. Atmosphere 11, 1310 (2020).

Berlato, M. A., Matzenauer, R. & Bergamaschi, H. Evapotranspiração máxima da soja e relações com a evapotranspiração calculada pela equação de Penman. Evaporação do tanque “classe a” e radiação solar global. Agron. Sul. 22, 243–259 (1986).


Google Scholar
 

Manual of Safety and Quality for Soy Crop (EMBRAPA, 2005); https://ainfo.cnptia.embrapa.br/digital/bitstream/item/25249/1/manualsegurancaqualidadeparaaculturadesoja.pdf

Andrade, C. L. T. et al. Simulação do Crescimento da Planta e da Dinâmica de Agua e Nitrogênio na Cultura Milho: 1. Fitomassa, Area Foliar e Produtividade de Grãos (EMBRAPA, 2006); https://ainfo.cnptia.embrapa.br/digital/bitstream/item/29773/1/Simulacao-crescimento-3.pdf

Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman & Hall/CRC, 2017).

Marengo, J. A. et al. Onset and end of the rainy season in the Brazilian Amazon Basin. J. Clim. 14, 833–852 (2001).

Article 

Google Scholar
 

Spracklen, D., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

Article 
CAS 

Google Scholar
 

Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Megacity precipitation sheds reveal teleconnected water security challenges. PLoS ONE 13, e0194311 (2018).

Article 

Google Scholar
 

Swann, A. L., Fung, I. Y. & Chiang, J. C. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl Acad. Sci. USA 109, 712–716 (2012).

Article 
CAS 

Google Scholar
 

Liu, L. et al. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon during the dry season: relative importance of aerosol–cloud and aerosol–radiation interactions. Atmos. Chem. Phys. 20, 13283–13301 (2020).

Article 
CAS 

Google Scholar
 

Ribeiro, J. F. & Walter, B. M. T. in Cerrado: Ecologia e Flora (eds Sano, S. M. et al.) 153–212 (EMBRAPA, 2008).

Archer-Nicholls, S. E. et al. Aerosol–radiation–cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution. Atmos. Chem. Phys. 16, 5573–5594 (2016).

Article 
CAS 

Google Scholar
 

IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.O. et al.) (Cambridge Univ. Press, 2022).

Lathuilliere, M. et al. Rain-fed and irrigated cropland-atmosphere water fluxes and their implications for agricultural production in Southern Amazonia. Agric. For. Meteorol. 256–257, 407–419 (2018).

Oliveira, M. W. et al. Dry matter and nutrient cycling by soil cover plants in an intensive corn silage production system. Res. Soc. Dev. 11, e45611831008 (2022).

Plano de Ação para Prevenção e Controle do Desmatamento e das Queimadas no Bioma Cerrado (PPCerrado): 4a. Fase (2023 a 2027) (MMA, 2023).

Aragão, R. B. A. et al. To clear or not to clear: unpacking soy farmers’ decision-making on deforestation in Brazil’s Cerrado. Front. Sustain. Food Syst. 6, 942207 (2022).

Nunes, F. et al. Environmental Compliance of Coffee, Soy, and Forest Plantations in the State of Minas Gerais, Brazil (CSR/UFMG, 2024); https://csr.ufmg.br/csr/wp-content/uploads/2024/03/policy_conformidade_cadeias_sv_mg_13_03_24_en.pdf

Balanço do Código Florestal Vol. 1 (CSR, 2022); https://csr.ufmg.br/csr/wp-content/uploads/2022/08/boletim_cf_vol.1.pdf

Carvalho-Ribeiro, S. et al. Bioeconomic markets based on the use of native species (NS) in Brazil. Ecol. Econ. 218, 108124 (2024).

Produção Agrícola Municipal 2022 (IBGE, 2022); www.sidra.ibge.gov.br/bda/pesquisas/pam

Rochedo, P. et al. The threat of political bargaining to climate mitigation in Brazil. Nat. Clim. Change 8, 695–698 (2018).

Article 
CAS 

Google Scholar
 

Abrahão, G. M. & Costa, M. H. Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: the rise (and possible fall) of double cropping systems. Agric. For. Meteorol. 256, 32–45 (2018).

Article 

Google Scholar
 

Cramér, H. Mathematical Methods of Statistics Ch. 21 (Princeton Univ. Press, 1946).

Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101 (1904).

Article 

Google Scholar
 

Leite-Filho, A., Soares-Filho, B. & Oliveira, U. Climate anomalies due to Cerrado native vegetation loss [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.27273177.v1 (2024).

Leite-Filho, A., Soares-Filho, B. & Oliveira, U. Accumulated deforestation in the Cerrado biome (1999 to 2019) [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.27273294.v1 (2024).

Leite-Filho, A. Soybean and maize yield residuals in the Cerrado biome [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.27276621.v1 (2024).

Leite-Filho, A., Soares-Filho, B. & Oliveira, U. Intensification of climate change impacts on the Cerrado agriculture due to deforestation (Leite-Filho et al., 2024, Nat. Commun.). Figshare https://doi.org/10.6084/m9.figshare.27277701.v1 (2024).