Davis, G. E. Proposed technical society. Chem. News 41, 261 (1880).


Google Scholar
 

IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

Gross, R., Hanna, R., Gambhir, A., Heptonstall, P. & Speirs, J. How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technology. Energy Policy 123, 682–699 (2018).

Article 

Google Scholar
 

Harmsen, J. Industrial Process Scale-up: A Practical Innovation Guide from Idea to Commercial Implementation (Elsevier, 2019).

Wang, N., Akimoto, K. & Nemet, G. F. What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects. Energy Policy 158, 112546 (2021).

Article 
CAS 

Google Scholar
 

Mankins, J. C. Technology readiness and risk assessments: a new approach. Acta Astronaut. 65, 1208–1215 (2009).

Article 

Google Scholar
 

Koivisto, R. et al. Integrating future-oriented technology analysis and risk assessment methodologies. Technol. Forecast. Soc. Change 76, 1163–1176 (2009).

Article 

Google Scholar
 

Peng, F. in Foundations of Robotics: A Multidisciplinary Approach with Python and ROS (eds Herath, D. & St-Onge, D.) 63–81 (Springer, 2022).

Moore, T. et al. Electrolyzer energy dominates separation costs in state-of-the-art CO2 electrolyzers: implications for single-pass CO2 utilization. Joule 7, 782–796 (2023).

Article 
CAS 

Google Scholar
 

Walker, W. H., Lewis, W. K. & McAdams, W. H. Principles of Chemical Engineering (McGraw-Hill, 1923).

Bird, R. B., Stewart, W. E. & Lightfoot, E. N. Transport Phenomena (Wiley, 2006).

Whitaker, S. The Method of Volume Averaging 13 (Springer Science & Business Media, 1998).

McCabe, W. L., Smith, J. C. & Harriott, P. Unit Operations of Chemical Engineering (McGraw-Hill, 1993).

Levenspiel, O. Chemical Reaction Engineering (Wiley, 1998).

Fogler, H. Elements of Chemical Reaction Engineering (Pearson, 2020).

Deen, W. M. Analysis of Transport Phenomena (Oxford Univ. Press, 2011).

Lin, Y.-J. & Rochelle, G. T. Approaching a reversible stripping process for CO2 capture. Chem. Eng. J. 283, 1033–1043 (2016).

Article 
CAS 

Google Scholar
 

van Gool, W. Exergy analysis of industrial processes. Energy 17, 791–803 (1992).

Article 

Google Scholar
 

Hoseinpoori, S., Pallarès, D., Johnsson, F. & Thunman, H. A comparative exergy-based assessment of direct air capture technologies. Mitig. Adapt. Strateg. Glob. Change 28, 39 (2023).

Article 

Google Scholar
 

Christopher, K. & Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 5, 6640–6651 (2012).

Article 
CAS 

Google Scholar
 

Riboldi, L. & Bolland, O. Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants. Int. J. Greenh. Gas Control 39, 1–16 (2015).

Article 
CAS 

Google Scholar
 

Holmes, H. E., Realff, M. J. & Lively, R. P. Water management and heat integration in direct air capture systems. Nat. Chem. Eng. 1, 208–215 (2024).

Article 

Google Scholar
 

Hausmann, J. N. et al. Hyping direct seawater electrolysis hinders electrolyzer development. Joule 8, 2436–2442 (2024).

Article 

Google Scholar
 

Ludwig, H. Reverse Osmosis Seawater Desalination Volume 2: Planning, Process Design and Engineering—A Manual for Study and Practice (Springer, 2022).

Velasco, J. A. C., Tawarmalani, M. & Agrawal, R. Systematic analysis reveals thermal separations are not necessarily most energy intensive. Joule 5, 330–343 (2021).

Article 

Google Scholar
 

Lin, Y.-J., Chen, E. & Rochelle, G. T. Pilot plant test of the advanced flash stripper for CO2 capture. Faraday Discuss. 192, 37–58 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Sahinidis, N. The ALAMO approach to machine learning. Comput. Aided Chem. Eng 38, 2410 (2016).

Article 

Google Scholar
 

Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).


Google Scholar
 

Baker-Fales, M., Chen, T.-Y. & Vlachos, D. G. Scale-up of microwave-assisted, continuous flow, liquid phase reactors: application to 5-hydroxymethylfurfural production. Chem. Eng. J. 454, 139985 (2023).

Article 
CAS 

Google Scholar
 

Miriyala, S. S., Pujari, K. N., Naik, S. & Mitra, K. Evolutionary neural architecture search for surrogate models to enable optimization of industrial continuous crystallization process. Powder Technol. 405, 117527 (2022).

Article 
CAS 

Google Scholar
 

Miller, D. C. Accelerating the identification, development and scale up of carbon capture technologies through advanced modeling. In Proc. TechConnect World Innovation Conference & Expo NETL-PUB-1213 (OSTI, 2015).

Schweidtmann, A. M. et al. Machine learning in chemical engineering: a perspective. Chem. Ing. Tech. 93, 2029–2039 (2021).

Article 
CAS 

Google Scholar
 

Dobbelaere, M. R., Plehiers, P. P., Van de Vijver, R., Stevens, C. V. & Van Geem, K. M. Machine learning in chemical engineering: strengths, weaknesses, opportunities and threats. Engineering 7, 1201–1211 (2021).

Article 
CAS 

Google Scholar
 

Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

Article 

Google Scholar
 

Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Benner, P., Gugercin, S. & Willcox, K. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015).

Article 

Google Scholar
 

Rowley, C. W. & Dawson, S. T. Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387–417 (2017).

Article 

Google Scholar
 

Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Neural Information Processing Systems (2018).

Fries, W. D., He, X. & Choi, Y. LaSDI: parametric latent space dynamics identification. Comput. Methods Appl. Mech. Eng. 399, 115436 (2022).

Article 

Google Scholar
 

Li, Z. et al. Fourier neural operator for parametric partial differential equations. Preprint at https://arxiv.org/abs/2010.08895 (2020).

McBane, S. & Choi, Y. Component-wise reduced order model lattice-type structure design. Comput. Methods Appl. Mech. Eng. 381, 113813 (2021).

Article 

Google Scholar
 

Chung, S. W. et al. Train small, model big: scalable physics simulators via reduced order modeling and domain decomposition. Comput. Methods Appl. Mech. Eng. 427, 117041 (2024).

Article 

Google Scholar
 

Wilson, G. & Deal, C. Activity coefficients and molecular structure. Activity coefficients in changing environments-solutions of groups. Ind. Eng. Chem. Fundam. 1, 20–23 (1962).

Article 
CAS 

Google Scholar
 

Fredenslund, A., Jones, R. L. & Prausnitz, J. M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975).

Article 
CAS 

Google Scholar
 

Haslam, A. J. et al. Expanding the applications of the SAFT-γ Mie group-contribution equation of state: prediction of thermodynamic properties and phase behavior of mixtures. J. Chem. Eng. Data 65, 5862–5890 (2020).

Article 
CAS 

Google Scholar
 

Walker, P. J., Yew, H.-W. & Riedemann, A. Clapeyron.jl: an extensible, open-source fluid thermodynamics toolkit. Ind. Eng. Chem. Res. 61, 7130–7153 (2022).

Article 
CAS 

Google Scholar
 

Davidopoulou, C. & Ouranidis, A. Pharma 4.0—artificially intelligent digital twins for solidified nanosuspensions. Pharmaceutics 14, 2113 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Papadopoulos, A. I. et al. Molecular engineering of sustainable phase-change solvents: from digital design to scaling-up for CO2 capture. Chem. Eng. J. 420, 127624 (2021).

Article 
CAS 

Google Scholar
 

Winter, B., Winter, C., Esper, T., Schilling, J. & Bardow, A. SPT-NRTL: a physics-guided machine learning model to predict thermodynamically consistent activity coefficients. Fluid Phase Equilib. 568, 113731 (2023).

Article 
CAS 

Google Scholar
 

Ghoroghi, A., Rezgui, Y., Petri, I. & Beach, T. Advances in application of machine learning to life cycle assessment: a literature review. Int. J. Life Cycle Assess. 27, 433–456 (2022).

Article 

Google Scholar
 

Frey, D., Neyerlin, K. C. & Modestino, M. A. Bayesian optimization of electrochemical devices for electrons-to-molecules conversions: the case of pulsed CO2 electroreduction. React. Chem. Eng. 8, 323–331 (2023).

Article 
CAS 

Google Scholar
 

Shen, Y. et al. Automation and computer-assisted planning for chemical synthesis. Nat. Rev. Methods Primer 1, 23 (2021).

Article 
CAS 

Google Scholar
 

Annevelink, E. et al. AutoMat: automated materials discovery for electrochemical systems. MRS Bull. 47, 1036–1044 (2022).

Article 

Google Scholar
 

Lee, N. A., Shen, S. C. & Buehler, M. J. An automated biomateriomics platform for sustainable programmable materials discovery. Matter 5, 3597–3613 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tajsoleiman, T. Automating Experimentation in Miniaturized Reactors (Technical Univ. Denmark, 2018).

Selekman, J. A. et al. High-throughput automation in chemical process development. Annu. Rev. Chem. Biomol. Eng. 8, 525–547 (2017).

Article 
PubMed 

Google Scholar
 

Alwosheel, A., van Cranenburgh, S. & Chorus, C. G. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. J. Choice Model. 28, 167–182 (2018).

Article 

Google Scholar
 

Zhao, Y., Gao, J., Bian, X., Tang, H. & Zhang, T. From the perspective of experimental practice: high-throughput computational screening in photocatalysis. Green Energy Environ. 9, 1–6 (2024).

Article 

Google Scholar
 

Chakraborty, S. et al. Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2, 837–845 (2017).

Article 
CAS 

Google Scholar
 

Schütter, C., Husch, T., Korth, M. & Balducci, A. Toward new solvents for EDLCs: from computational screening to electrochemical validation. J. Phys. Chem. C 119, 13413–13424 (2015).

Article 

Google Scholar
 

Stephens, I. E. et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).

Article 
CAS 

Google Scholar
 

Li, X., Wang, S., Li, L., Sun, Y. & Xie, Y. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142, 9567–9581 (2020).

CAS 
PubMed 

Google Scholar
 

Moss, A. B. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2023).

Article 
CAS 

Google Scholar
 

Biswas, I. et al. Advancement of segmented cell technology in low temperature hydrogen technologies. Energies 13, 2301 (2020).

Article 
CAS 

Google Scholar
 

Heldebrant, D. J. et al. Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities and outlook. Chem. Rev. 117, 9594–9624 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Ellebracht, N. C. et al. 3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture. Energy Environ. Sci. 16, 1752–1762 (2023).

Article 
CAS 

Google Scholar
 

Kvamsdal, H. M. & Rochelle, G. T. Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind. Eng. Chem. Res. 47, 867–875 (2008).

Article 
CAS 

Google Scholar
 

Sun, S. et al. Real-time imaging and holdup measurement of carbon dioxide under CCS conditions using electrical capacitance tomography. IEEE Sens. J. 18, 7551–7559 (2018).

Article 
CAS 

Google Scholar
 

Gouedard, C., Picq, D., Launay, F. & Carrette, P.-L. Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 10, 244–270 (2012).

Article 
CAS 

Google Scholar
 

Dalton, A., Wolff, K. & Bekker, B. Multidisciplinary research as a complex system. Int. J. Qual. Methods 20, 16094069211038400 (2021).

Article 

Google Scholar
 

Singh, R. K. et al. Hydrodynamics of countercurrent flow in an additive-manufactured column with triply periodic minimal surfaces for carbon dioxide capture. Chem. Eng. J. 450, 138124 (2022).

Article 
CAS 

Google Scholar
 

Moore, T., Nguyen, D., Iyer, J., Roy, P. & Stolaroff, J. K. Advanced absorber heat integration via heat exchange packings. AIChE J. 67, e17243 (2021).

Article 
CAS 

Google Scholar
 

Gongora, A. E. et al. Accelerating the design of lattice structures using machine learning. Sci. Rep. 14, 13703 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lin, T. Y. et al. Advancing carbon capture from bench to pilot scale using dynamic similitude. Cell Rep. Phys. Sci. 5, 102019 (2024).

Article 
CAS 

Google Scholar
 

Xia, J., Jödecke, M., Pérez-Salado Kamps, Á. & Maurer, G. Solubility of CO2 in (CH3OH + H2O). J. Chem. Eng. Data 49, 1756–1759 (2004).

Article 
CAS 

Google Scholar