Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, C. et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock. Nature 633, 63–70 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Hudson, E. R., Vutha, A. C., Lamoreaux, S. K. & DeMille, D. Investigation of the optical transition in the 229Th nucleus: solid-state optical frequency standard and fundamental constant variation (Poster). In Proc. XXI International Conference on Atomic Physics (eds Rozman, M. G. et al.) MO28 (2008).

Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181–186 (2003).

Article 
ADS 
CAS 

Google Scholar
 

Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Litvinova, E., Feldmeier, H., Dobaczewski, J. & Flambaum, V. Nuclear structure of lowest 229Th states and time-dependent fundamental constants. Phys. Rev. C 79, 064303 (2009).

Article 
ADS 

Google Scholar
 

Fuchs, E. et al. Implications of the laser excitation of the Th-229 nucleus for dark matter searches. Preprint at https://arxiv.org/abs/2407.15924 (2024).

Caputo, A. et al. On the sensitivity of nuclear clocks to new physics. Preprint at https://arxiv.org/abs/2407.17526 (2024).

Beeks, K. et al. Fine-structure constant sensitivity of the Th-229 nuclear clock transition. Preprint at https://arxiv.org/abs/2407.17300 (2024).

Jeet, J. et al. Results of a direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition. Phys. Rev. Lett. 114, 253001 (2015).

Article 
ADS 
PubMed 

Google Scholar
 

Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).

Tkalya, E. V., Varlamov, V. O., Lomonosov, V. V. & Nikulin, S. A. Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr. 53, 296–299 (1996).

Article 
ADS 
CAS 

Google Scholar
 

Tkalya, E. V. Proposal for a nuclear gamma-ray laser of optical range. Phys. Rev. Lett. 106, 162501 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).

Article 
ADS 

Google Scholar
 

Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

Article 
CAS 

Google Scholar
 

Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021).

Article 
ADS 

Google Scholar
 

Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).

Article 
ADS 

Google Scholar
 

Hogle, S. et al. Reactor production of thorium-229. Appl. Radiat. Isot. 114, 19–27 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Forsberg, C. & Lewis, L. Uses For Uranium-233: What Should Be Kept For Future Needs? (Oak Ridge National Laboratory, 1999).

Jeet, J. Search for the Low Lying Transition in the 229Th Nucleus. PhD thesis, Univ. California (2018).

Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rellergert, W. G. et al. Progress towards fabrication of 229Th-doped high energy band-gap crystals for use as a solid-state optical frequency reference. IOP Conf. Ser. Mater. Sci. Eng. 15, 012005 (2010).

Article 

Google Scholar
 

Sletten, G. Preparation of targets of alpha-radioactive isotopes. Nucl. Instrum. Methods 102, 465–468 (1972).

Article 
ADS 
CAS 

Google Scholar
 

Adair, H. L. Preparation and characterization of radioactive samples for various areas of research. Nucl. Instrum. Methods 167, 45–53 (1979).

Article 
ADS 
CAS 

Google Scholar
 

Glover, K. M. et al. The preparation of stable and actinide nuclide targets for nuclear measurements. IEEE Trans. Nucl. Sci. 28, 1593–1596 (1981).

Article 
ADS 

Google Scholar
 

Maier, H. J. Preparation of nuclear accelerator targets by vacuum evaporation. IEEE Trans. Nucl. Sci. 28, 1575–1583 (1981).

Article 
ADS 
MathSciNet 

Google Scholar
 

Maier, H. J., Grossmann, R. & Friebel, H. U. Radioactive targets for nuclear accelerator experiments. Nucl. Instrum. Methods Phys. Res. B 56, 926–932 (1991).

Article 
ADS 

Google Scholar
 

Greene, J. P., Ahmad, I. & Thomas, G. E. Radioactive targets and source development at Argonne National Laboratory. Nucl. Instrum. Methods Phys. Res. A 334, 101–110 (1993).

Article 
ADS 
CAS 

Google Scholar
 

Baumeister, P. W. Properties of Multilayer Filters (Institute of Optics, Univ. Rochester, 1973).

IAEA. Regulations for the Safe Transport of Radioactive Material. Report No. SSR-6 (Rev. 1) (IAEA, 2018).

Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

Article 
ADS 

Google Scholar
 

Ellis, J. K., Wen, X.-D. & Martin, R. L. Investigation of thorium salts as candidate materials for direct observation of the 229mTh nuclear transition. Inorg. Chem. 53, 6769–6774 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Gouder, T. et al. Measurements of the band gap of ThF4 by electron spectroscopy techniques. Phys. Rev. Res. 1, 033005 (2019).

Article 
CAS 

Google Scholar
 

Osipenko, M. et al. Measurement of photo- and radio-luminescence of thin ThF4 films. Nucl. Instrum. Methods Phys. Res. A 1068, 169744 (2024).

Article 
CAS 

Google Scholar
 

Urbach, H. P. & Rikken, G. L. Spontaneous emission from a dielectric slab. Phys. Rev. A 57, 3913–3930 (1998).

Article 
ADS 
CAS 

Google Scholar
 

Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

Article 
ADS 
CAS 

Google Scholar
 

Liao, W.-T., Das, S., Keitel, C. H. & Pálffy, A. Coherence-enhanced optical determination of the 229Th isomeric transition. Phys. Rev. Lett. 109, 262502 (2012).

Article 
ADS 
PubMed 

Google Scholar
 

Karpeshin, F. F. & Trzhaskovskaya, M. B. A proposed solution for the lifetime puzzle of the 229mTh+ isomer. Nucl. Phys. A 1010, 122173 (2021).

Article 
CAS 

Google Scholar
 

Kroemer, H. Problems in the theory of heterojunction discontinuities. CRC Crit. Rev. Solid State Sci. 5, 555–564 (1975).

Article 
CAS 

Google Scholar
 

Brillson, L. J. Surfaces and Interfaces of Electronic Materials (Wiley, 2012).

Beeks, K. et al. Optical transmission enhancement of ionic crystals via superionic fluoride transfer: growing VUV-transparent radioactive crystals. Phys. Rev. B 109, 094111 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Pastor, R. & Arita, K. Preparation and crystal growth of ThF4. Mater. Res. Bull. 9, 579–583 (1974).

Article 
CAS 

Google Scholar
 

Martel, L. et al. Insight into the crystalline structure of ThF4 with the combined use of neutron diffraction, 19F magic-angle spinning-NMR, and density functional theory calculations. Inorg. Chem. 57, 15350–15360 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Bemis, C. E. et al. Coulomb excitation of states in 229Th. Phys. Scr. 38, 657–663 (1988).

Article 
ADS 
CAS 

Google Scholar
 

Gerstenkorn, S. et al. Structures hyperfines du spectre d’étincelle, moment magnétique et quadrupolaire de l’isotope 229 du thorium. J. Phys. 35, 483–495 (1974).

Article 
CAS 

Google Scholar
 

Campbell, C., Radnaev, A. & Kuzmich, A. Wigner crystals of 229Th for optical excitation of the nuclear isomer. Phys. Rev. Lett. 106, 223001 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature 629, 62–66 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jackson, R. A., Amaral, J. B., Valerio, M. E. G., Demille, D. P. & Hudson, E. R. Computer modelling of thorium doping in LiCaAlF6 and LiSrAlF6: application to the development of solid state optical frequency devices. J. Phys. Condens. Matter 21, 325403 (2009).

Article 
PubMed 

Google Scholar
 

Pimon, M., Grüneis, A., Mohn, P. & Schumm, T. Ab-initio study of calcium fluoride doped with heavy isotopes. Crystals 12, 1128 (2022).

Article 
CAS 

Google Scholar
 

Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S. & Rüffer, R. Collective Lamb shift in single-photon superradiance. Science 328, 1248–1251 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Dornow, V. A., Binder, J., Heidemann, A., Kalvius, G. M. & Wortmann, G. Preparation of narrow-line sources for the 6.2 keV Mössbauer resonance of 181Ta. Nucl. Instrum. Methods 163, 491–497 (1979).

Article 
ADS 
CAS 

Google Scholar
 

von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).

Article 
ADS 

Google Scholar
 

Chastain, J. & King R. C. in Handbook of X-ray Photoelectron Spectroscopy Vol. 40 (ed. Chastain, J.) 221 (Perkin-Elmer, 1992).

Li, H. H. Refractive index of alkaline earth halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 8, 161–290 (1980).

Article 
ADS 

Google Scholar
 

French, R. H., Müllejans, H. & Jones, D. J. Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies. J. Am. Ceram. Soc. 81, 2549–2557 (1998).

Article 
CAS 

Google Scholar
 

Zemax OpticStudio. Zemax v.12.2 (ANSYS Inc., 2012).

Steele, J. A. et al. How to GIWAXS: grazing incidence wide angle X-ray scattering applied to metal halide perovskite thin films. Adv. Energy Mater. 13, 2300760 (2023).

Article 
CAS 

Google Scholar
 

Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Article 
ADS 
CAS 

Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

Article 
ADS 

Google Scholar
 

Petrilli, H. M., Blochl, P. E., Blaha, P. & Schwarz, K. Electric-field-gradient calculations using the projector augmented wave method. Phys. Rev. B 57, 14690–14697 (1998).

Article 
ADS 
CAS 

Google Scholar
 

Krukau, A., Vydrov, O., Izmaylov, A. & Scuseria, G. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

Article 
ADS 
PubMed 

Google Scholar
 

Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Nienhuis, G. & Alkemade, C. Th. J. Atomic radiative transition probabilities in a continuous medium. Physica B+C 81C, 181–188 (1976).

Article 
ADS 

Google Scholar
 

Tkalya, E. V. Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh(3/2+, 3.5 ± 1.0 eV) decay. JETP Lett. 71, 311–313 (2000).

Article 
ADS 
CAS 

Google Scholar
 

Lukosz, W. & Kunz, R. E. Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. J. Opt. Soc. Am. 67, 1615–1619 (1978).

Article 
ADS 

Google Scholar
 

Boyd, M. M. High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time. PhD thesis, Univ. Colorado (2007).