King, A. D. et al. Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett. 43, 3438–3443 (2016).
Ranasinghe, R. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1767–1926 (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.014
Theokritoff, E., Thomas, A., Lissner, T. & Schleussner, C.-F. Interacting adaptation constraints in the Caribbean highlight the importance of sustained adaptation finance. Clim. Risk Manage. 39, 100483 (2023).
Theokritoff, E. & D’haen, S. A. How is science making its way into national climate change adaptation policy? Insights from Burkina Faso. Clim. Dev. 14, 857–865 (2022).
Otto, F. E. L. et al. Challenges to understanding extreme weather changes in lower income countries. Bull. Am. Meteorol. Soc. 101, E1851–E1860 (2020).
Callaghan, M. et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat. Clim. Change 11, 966–972 (2021).
Goosen, H. et al. Climate adaptation services for the Netherlands: an operational approach to support spatial adaptation planning. Reg. Environ. Change 14, 1035–1048 (2014).
Obsi Gemeda, D., Korecha, D. & Garedew, W. Determinants of climate change adaptation strategies and existing barriers in southwestern parts of Ethiopia. Clim. Serv. 30, 100376 (2023).
Sultan, B. et al. Current needs for climate services in West Africa: results from two stakeholder surveys. Clim. Serv. 18, 100166 (2020).
Weichselgartner, J. & Arheimer, B. Evolving climate services into knowledge–action systems. Weather Clim. Soc. 11, 385–399 (2019).
Kropf, C. M. et al. Uncertainty and sensitivity analysis for probabilistic weather and climate risk modelling: an implementation in CLIMADA v.3.1.0. Geosci. Model Dev. 15, 7177–7201 (2022).
Ruane, A. C. et al. The climatic impact-driver framework for assessment of risk-relevant climate information. Earths Future 10, e2022EF002803 (2022).
Schleussner, C.-F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016).
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009157896
IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Matthews, J. B. R. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 2215–2256 (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.022
Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).
O’Neill, B. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 2411–2538 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009325844.025.2412
IPCC: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009157926.001
Leitner, M. et al. Monitoring and Evaluation of National Adaptation Policies Throughout the Policy Cycle (Publications Office of the European Union, 2020).
Dilling, L. et al. Is adaptation success a flawed concept? Nat. Clim. Change 9, 572–574 (2019).
Simpson, N. P. et al. Adaptation to compound climate risks: a systematic global stocktake. iScience 26, 105926 (2023).
IPCC: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.001
Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
IPCC: Technical Summary. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Harrington, L. J., Schleussner, C.-F. & Otto, F. E. L. Quantifying uncertainty in aggregated climate change risk assessments. Nat. Commun. 12, 7140 (2021).
Rawshan Ara Begum, R. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 121–196 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009325844.003
Thomas, A. et al. Global evidence of constraints and limits to human adaptation. Reg. Environ. Change 21, 85 (2021).
Esperon-Rodriguez, M. et al. Climate change increases global risk to urban forests. Nat. Clim. Change 12, 950–955 (2022).
Lamboll, R., Rogelj, J. & Schleussner, C.-F. A guide to scenarios for the PROVIDE project. Preprint at https://doi.org/10.1002/essoar.10511875.1 (2022).
Pfleiderer, P., Schleussner, C.-F. & Sillmann, J. Limited reversal of regional climate signals in overshoot scenarios. Environ. Res. Clim. 3, 015005 (2024).
Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).
Nauels, A. et al. Attributing long-term sea-level rise to Paris Agreement emission pledges. Proc. Natl Acad. Sci. USA 116, 23487–23492 (2019).
Mengel, M., Nauels, A., Rogelj, J. & Schleussner, C.-F. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9, 601 (2018).
Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498 (2013).
Schlumberger, J., Haasnoot, M., Aerts, J. & De Ruiter, M. Proposing DAPP-MR as a disaster risk management pathways framework for complex, dynamic multi-risk. iScience 25, 105219 (2022).
Battiston, S., Mandel, A., Monasterolo, I., Schütze, F. & Visentin, G. A climate stress-test of the financial system. Nat. Clim. Change 7, 283–288 (2017).
Ebi, K. L. et al. Stress testing the capacity of health systems to manage climate change-related shocks and stresses. Int. J. Environ. Res. Public. Health 15, 2370 (2018).
Linkov, I. et al. Resilience stress testing for critical infrastructure. Int. J. Disaster Risk Reduct. 82, 103323 (2022).
Feygina, I. et al. Localized climate reporting by TV weathercasters enhances public understanding of climate change as a local problem: evidence from a randomized controlled experiment. Bull. Am. Meteorol. Soc. 101, E1092–E1100 (2020).
Moore, F. C. et al. Determinants of emissions pathways in the coupled climate–social system. Nature 603, 103–111 (2022).
Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Smith, C. et al. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 7 (Cambridge Univ. Press, 2021).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).
Hooyberghs, H., Berckmans, J., Lauwaet, D., Lefebre, F. & De Ridder, K. Climate Variables for Cities in Europe from 2008 to 2017 (CDS, 2019); https://doi.org/10.24381/cds.c6459d3a
Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).
Palmer, T. E. et al. Performance-based sub-selection of CMIP6 models for impact assessments in Europe. Earth Syst. Dyn. 14, 457–483 (2023).
Wagner, C. E. V. Development and Structure of the Canadian Forest Fire Weather Index System. (Minister of Supply and Services Canada, 1987).
Quilcaille, Y., Batibeniz, F., Ribeiro, A. F. S., Padrón, R. S. & Seneviratne, S. I. Fire weather index data under historical and shared socioeconomic pathway projections in the 6th phase of the Coupled Model Intercomparison Project from 1850 to 2100. Earth Syst. Sci. Data 15, 2153–2177 (2023).
Quilcaille, Y., Gudmundsson, L. & Seneviratne, S. I. Extending MESMER-X: a spatially resolved Earth system model emulator for fire weather and soil moisture. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2023-589 (2023).
Schwaab, J. et al. Spatially resolved emulated annual temperature projections for overshoot pathways. Sci. Data 11, 1262 (2024).
Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).
Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. https://doi.org/10.3389/feart.2015.00054 (2015).
Maussion, F. et al. The Open Global Glacier Model (OGGM) v1.1. Geosci. Model Dev. 12, 909–931 (2019).
Maussion, F. et al. OGGM/oggm: v1.6.1. Zenodo https://doi.org/10.5281/zenodo.8287580 (2023).
Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).
Zekollari, H. et al. Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations. The Cryosphere 18, 5045–5066 (2024).
Chen, D. et al. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 1 (Cambridge Univ. Press, 2021).
Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).
Bourn, A. AyrtonB/Merit-Order-Effect: v1.0.0. Zenodo https://doi.org/10.5281/ZENODO.4642896 (2021).
State of the Cryosphere 2023: Two Degrees Is Too High (ICCI, 2023); https://iccinet.org/statecryo23/
Schuster, L., Huss, M., Maussion, F., Rounce, D. R. & Tober, B. S. lilianschuster/glacier-model-projections-until2300: v1.0. Zenodo https://doi.org/10.5281/zenodo.10059778 (2023).
Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
Zickfeld, K. et al. Long-term climate change commitment and reversibility: an EMIC intercomparison. J. Clim. 26, 5782–5809 (2013).
Nicholls, Z. R. J. et al. Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response. Geosci. Model Dev. 13, 5175–5190 (2020).
Nicholls, Z. et al. Reduced Complexity Model Intercomparison Project Phase 2: synthesizing Earth system knowledge for probabilistic climate projections. Earths Future 9, e2020EF001900 (2021).
Beusch, L. et al. From emission scenarios to spatially resolved projections with a chain of computationally efficient emulators: coupling of MAGICC (v7.5.1) and MESMER (v0.8.1). Geosci. Model Dev. 15, 2085–2103 (2021).
Nath, S., Lejeune, Q., Beusch, L., Seneviratne, S. I. & Schleussner, C.-F. MESMER-M: an Earth system model emulator for spatially resolved monthly temperature. Earth Syst. Dyn. 13, 851–877 (2022).
Quilcaille, Y., Gudmundsson, L., Beusch, L., Hauser, M. & Seneviratne, S. I. Showcasing MESMER-X: spatially resolved emulation of annual maximum temperatures of Earth system models. Preprint at https://doi.org/10.1002/essoar.10511207.1 (2022).
Liu, G., Peng, S., Huntingford, C. & Xi, Y. A new precipitation emulator (PREMU v1.0) for lower-complexity models. Geosci. Model Dev. 16, 1277–1296 (2023).
Tebaldi, C., Snyder, A. & Dorheim, K. STITCHES: creating new scenarios of climate model output by stitching together pieces of existing simulations. Earth Syst. Dyn. 13, 1557–1609 (2022).
James, R., Washington, R., Schleussner, C. F., Rogelj, J. & Conway, D. Characterizing half-a-degree difference: a review of methods for identifying regional climate Responses to global warming targets. WIREs Clim. Change 8, e457 (2017).
Terhaar, J., Frölicher, T. L., Aschwanden, M. T., Friedlingstein, P. & Joos, F. Adaptive emission reduction approach to reach any global warming target. Nat. Clim. Change 12, 1136–1142 (2022).
Silvy, Y. et al. AERA-MIP: emission pathways, remaining budgets and carbon cycle dynamics compatible with 1.5 °C and 2 °C global warming stabilization. Preprint at https://doi.org/10.5194/egusphere-2024-488 (2024).
Goodwin, P., Brown, S., Haigh, I. D., Nicholls, R. J. & Matter, J. M. Adjusting mitigation pathways to stabilize climate at 1.5 °C and 2.0 °C rise in global temperatures to year 2300. Earths Future 6, 601–615 (2018).
Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).
Bossy, T., Gasser, T. & Ciais, P. Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios. Geosci. Model Dev. 15, 8831–8868 (2022).
Schuster, C., Burkart, K. & Lakes, T. Heat mortality in Berlin—Spatial variability at the neighborhood scale. Urban Clim. 10, 134–147 (2014).
Zekollari, H. et al. GloGEM CMIP6 global glacier projections. Zenodo https://zenodo.org/records/10908278 (2024).
Schuster, L., Schmitt, P., Vlug, A. & Maussion, F. OGG/oggm-standard-projections-csr-files: v1.0. Zenodo https://zenodo.org/records/8286065 (2023).
Pfleiderer, P. peterpeterp/perspective_reversal_of_the_impact_chain: submission 3. Zenodo https://zenodo.org/records/13884188 (2024).