King, A. D. et al. Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett. 43, 3438–3443 (2016).

Article 

Google Scholar
 

Ranasinghe, R. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1767–1926 (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.014

Theokritoff, E., Thomas, A., Lissner, T. & Schleussner, C.-F. Interacting adaptation constraints in the Caribbean highlight the importance of sustained adaptation finance. Clim. Risk Manage. 39, 100483 (2023).

Article 

Google Scholar
 

Theokritoff, E. & D’haen, S. A. How is science making its way into national climate change adaptation policy? Insights from Burkina Faso. Clim. Dev. 14, 857–865 (2022).

Article 

Google Scholar
 

Otto, F. E. L. et al. Challenges to understanding extreme weather changes in lower income countries. Bull. Am. Meteorol. Soc. 101, E1851–E1860 (2020).

Article 

Google Scholar
 

Callaghan, M. et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat. Clim. Change 11, 966–972 (2021).

Article 

Google Scholar
 

Goosen, H. et al. Climate adaptation services for the Netherlands: an operational approach to support spatial adaptation planning. Reg. Environ. Change 14, 1035–1048 (2014).


Google Scholar
 

Obsi Gemeda, D., Korecha, D. & Garedew, W. Determinants of climate change adaptation strategies and existing barriers in southwestern parts of Ethiopia. Clim. Serv. 30, 100376 (2023).

Article 

Google Scholar
 

Sultan, B. et al. Current needs for climate services in West Africa: results from two stakeholder surveys. Clim. Serv. 18, 100166 (2020).

Article 

Google Scholar
 

Weichselgartner, J. & Arheimer, B. Evolving climate services into knowledge–action systems. Weather Clim. Soc. 11, 385–399 (2019).

Article 

Google Scholar
 

Kropf, C. M. et al. Uncertainty and sensitivity analysis for probabilistic weather and climate risk modelling: an implementation in CLIMADA v.3.1.0. Geosci. Model Dev. 15, 7177–7201 (2022).

Ruane, A. C. et al. The climatic impact-driver framework for assessment of risk-relevant climate information. Earths Future 10, e2022EF002803 (2022).

Article 

Google Scholar
 

Schleussner, C.-F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016).

Article 

Google Scholar
 

Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

Article 
CAS 

Google Scholar
 

IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009157896

IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

Matthews, J. B. R. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 2215–2256 (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.022

Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).

Article 
CAS 

Google Scholar
 

Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).

Article 
CAS 

Google Scholar
 

O’Neill, B. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 2411–2538 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009325844.025.2412

IPCC: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009157926.001

Leitner, M. et al. Monitoring and Evaluation of National Adaptation Policies Throughout the Policy Cycle (Publications Office of the European Union, 2020).

Dilling, L. et al. Is adaptation success a flawed concept? Nat. Clim. Change 9, 572–574 (2019).

Article 

Google Scholar
 

Simpson, N. P. et al. Adaptation to compound climate risks: a systematic global stocktake. iScience 26, 105926 (2023).

Article 

Google Scholar
 

IPCC: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.001

Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

Article 

Google Scholar
 

IPCC: Technical Summary. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

Harrington, L. J., Schleussner, C.-F. & Otto, F. E. L. Quantifying uncertainty in aggregated climate change risk assessments. Nat. Commun. 12, 7140 (2021).

Article 
CAS 

Google Scholar
 

Rawshan Ara Begum, R. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 121–196 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009325844.003

Thomas, A. et al. Global evidence of constraints and limits to human adaptation. Reg. Environ. Change 21, 85 (2021).

Article 

Google Scholar
 

Esperon-Rodriguez, M. et al. Climate change increases global risk to urban forests. Nat. Clim. Change 12, 950–955 (2022).

Article 

Google Scholar
 

Lamboll, R., Rogelj, J. & Schleussner, C.-F. A guide to scenarios for the PROVIDE project. Preprint at https://doi.org/10.1002/essoar.10511875.1 (2022).

Pfleiderer, P., Schleussner, C.-F. & Sillmann, J. Limited reversal of regional climate signals in overshoot scenarios. Environ. Res. Clim. 3, 015005 (2024).

Article 

Google Scholar
 

Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).

Article 
CAS 

Google Scholar
 

Nauels, A. et al. Attributing long-term sea-level rise to Paris Agreement emission pledges. Proc. Natl Acad. Sci. USA 116, 23487–23492 (2019).

Article 
CAS 

Google Scholar
 

Mengel, M., Nauels, A., Rogelj, J. & Schleussner, C.-F. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9, 601 (2018).

Article 

Google Scholar
 

Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498 (2013).

Article 

Google Scholar
 

Schlumberger, J., Haasnoot, M., Aerts, J. & De Ruiter, M. Proposing DAPP-MR as a disaster risk management pathways framework for complex, dynamic multi-risk. iScience 25, 105219 (2022).

Article 
CAS 

Google Scholar
 

Battiston, S., Mandel, A., Monasterolo, I., Schütze, F. & Visentin, G. A climate stress-test of the financial system. Nat. Clim. Change 7, 283–288 (2017).

Article 

Google Scholar
 

Ebi, K. L. et al. Stress testing the capacity of health systems to manage climate change-related shocks and stresses. Int. J. Environ. Res. Public. Health 15, 2370 (2018).

Article 

Google Scholar
 

Linkov, I. et al. Resilience stress testing for critical infrastructure. Int. J. Disaster Risk Reduct. 82, 103323 (2022).

Article 

Google Scholar
 

Feygina, I. et al. Localized climate reporting by TV weathercasters enhances public understanding of climate change as a local problem: evidence from a randomized controlled experiment. Bull. Am. Meteorol. Soc. 101, E1092–E1100 (2020).

Article 

Google Scholar
 

Moore, F. C. et al. Determinants of emissions pathways in the coupled climate–social system. Nature 603, 103–111 (2022).

Article 
CAS 

Google Scholar
 

Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

Article 
CAS 

Google Scholar
 

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

Article 

Google Scholar
 

Smith, C. et al. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 7 (Cambridge Univ. Press, 2021).

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

Article 

Google Scholar
 

Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).

Article 

Google Scholar
 

Hooyberghs, H., Berckmans, J., Lauwaet, D., Lefebre, F. & De Ridder, K. Climate Variables for Cities in Europe from 2008 to 2017 (CDS, 2019); https://doi.org/10.24381/cds.c6459d3a

Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).

Article 
CAS 

Google Scholar
 

Palmer, T. E. et al. Performance-based sub-selection of CMIP6 models for impact assessments in Europe. Earth Syst. Dyn. 14, 457–483 (2023).

Article 

Google Scholar
 

Wagner, C. E. V. Development and Structure of the Canadian Forest Fire Weather Index System. (Minister of Supply and Services Canada, 1987).

Quilcaille, Y., Batibeniz, F., Ribeiro, A. F. S., Padrón, R. S. & Seneviratne, S. I. Fire weather index data under historical and shared socioeconomic pathway projections in the 6th phase of the Coupled Model Intercomparison Project from 1850 to 2100. Earth Syst. Sci. Data 15, 2153–2177 (2023).

Article 

Google Scholar
 

Quilcaille, Y., Gudmundsson, L. & Seneviratne, S. I. Extending MESMER-X: a spatially resolved Earth system model emulator for fire weather and soil moisture. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2023-589 (2023).

Schwaab, J. et al. Spatially resolved emulated annual temperature projections for overshoot pathways. Sci. Data 11, 1262 (2024).

Article 

Google Scholar
 

Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

Article 

Google Scholar
 

Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

Article 
CAS 

Google Scholar
 

Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

Article 
CAS 

Google Scholar
 

Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. https://doi.org/10.3389/feart.2015.00054 (2015).

Maussion, F. et al. The Open Global Glacier Model (OGGM) v1.1. Geosci. Model Dev. 12, 909–931 (2019).

Article 

Google Scholar
 

Maussion, F. et al. OGGM/oggm: v1.6.1. Zenodo https://doi.org/10.5281/zenodo.8287580 (2023).

Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).

Article 
CAS 

Google Scholar
 

Zekollari, H. et al. Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations. The Cryosphere 18, 5045–5066 (2024).

Article 

Google Scholar
 

Chen, D. et al. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 1 (Cambridge Univ. Press, 2021).

Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

Article 

Google Scholar
 

Bourn, A. AyrtonB/Merit-Order-Effect: v1.0.0. Zenodo https://doi.org/10.5281/ZENODO.4642896 (2021).

State of the Cryosphere 2023: Two Degrees Is Too High (ICCI, 2023); https://iccinet.org/statecryo23/

Schuster, L., Huss, M., Maussion, F., Rounce, D. R. & Tober, B. S. lilianschuster/glacier-model-projections-until2300: v1.0. Zenodo https://doi.org/10.5281/zenodo.10059778 (2023).

Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).

Article 

Google Scholar
 

Zickfeld, K. et al. Long-term climate change commitment and reversibility: an EMIC intercomparison. J. Clim. 26, 5782–5809 (2013).

Article 

Google Scholar
 

Nicholls, Z. R. J. et al. Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response. Geosci. Model Dev. 13, 5175–5190 (2020).

Article 
CAS 

Google Scholar
 

Nicholls, Z. et al. Reduced Complexity Model Intercomparison Project Phase 2: synthesizing Earth system knowledge for probabilistic climate projections. Earths Future 9, e2020EF001900 (2021).

Article 
CAS 

Google Scholar
 

Beusch, L. et al. From emission scenarios to spatially resolved projections with a chain of computationally efficient emulators: coupling of MAGICC (v7.5.1) and MESMER (v0.8.1). Geosci. Model Dev. 15, 2085–2103 (2021).

Nath, S., Lejeune, Q., Beusch, L., Seneviratne, S. I. & Schleussner, C.-F. MESMER-M: an Earth system model emulator for spatially resolved monthly temperature. Earth Syst. Dyn. 13, 851–877 (2022).

Article 

Google Scholar
 

Quilcaille, Y., Gudmundsson, L., Beusch, L., Hauser, M. & Seneviratne, S. I. Showcasing MESMER-X: spatially resolved emulation of annual maximum temperatures of Earth system models. Preprint at https://doi.org/10.1002/essoar.10511207.1 (2022).

Liu, G., Peng, S., Huntingford, C. & Xi, Y. A new precipitation emulator (PREMU v1.0) for lower-complexity models. Geosci. Model Dev. 16, 1277–1296 (2023).

Article 

Google Scholar
 

Tebaldi, C., Snyder, A. & Dorheim, K. STITCHES: creating new scenarios of climate model output by stitching together pieces of existing simulations. Earth Syst. Dyn. 13, 1557–1609 (2022).

Article 

Google Scholar
 

James, R., Washington, R., Schleussner, C. F., Rogelj, J. & Conway, D. Characterizing half-a-degree difference: a review of methods for identifying regional climate Responses to global warming targets. WIREs Clim. Change 8, e457 (2017).

Article 

Google Scholar
 

Terhaar, J., Frölicher, T. L., Aschwanden, M. T., Friedlingstein, P. & Joos, F. Adaptive emission reduction approach to reach any global warming target. Nat. Clim. Change 12, 1136–1142 (2022).

Article 

Google Scholar
 

Silvy, Y. et al. AERA-MIP: emission pathways, remaining budgets and carbon cycle dynamics compatible with 1.5 °C and 2 °C global warming stabilization. Preprint at https://doi.org/10.5194/egusphere-2024-488 (2024).

Goodwin, P., Brown, S., Haigh, I. D., Nicholls, R. J. & Matter, J. M. Adjusting mitigation pathways to stabilize climate at 1.5 °C and 2.0 °C rise in global temperatures to year 2300. Earths Future 6, 601–615 (2018).

Article 

Google Scholar
 

Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

Article 
CAS 

Google Scholar
 

Bossy, T., Gasser, T. & Ciais, P. Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios. Geosci. Model Dev. 15, 8831–8868 (2022).

Article 
CAS 

Google Scholar
 

Schuster, C., Burkart, K. & Lakes, T. Heat mortality in Berlin—Spatial variability at the neighborhood scale. Urban Clim. 10, 134–147 (2014).

Article 

Google Scholar
 

Zekollari, H. et al. GloGEM CMIP6 global glacier projections. Zenodo https://zenodo.org/records/10908278 (2024).

Schuster, L., Schmitt, P., Vlug, A. & Maussion, F. OGG/oggm-standard-projections-csr-files: v1.0. Zenodo https://zenodo.org/records/8286065 (2023).

Pfleiderer, P. peterpeterp/perspective_reversal_of_the_impact_chain: submission 3. Zenodo https://zenodo.org/records/13884188 (2024).