Mohammed, S. S. & Al-Tuwaijari, J. M. Skin disease classification system based on machine learning technique: a Survey. IOP Conf. Ser. Mater. Sci. Eng. 1076 (012045), 1–13 (2021).
Al-Tbali, J., Anam, L., Al-Jamrah, K. M. & Abdul Moaen, F. Chickenpox Outbreak Investigation in Assabain District, Sana’a City, Yemen, January to February 2019, Iproceedings, vol. 8, no. 8, pp. 1–2, doi: (2022). https://doi.org/10.2196/36598
Sanjita, S., Azeem, M. & Islamovna, U. G. Survey and outbreak of chicken pox; acknowledgement by med-student, in Proceedings of the 2nd International Scientific and Practical Conference, Brussels, Belgium, pp. 77–82. (2023).
Nasiba, P. & Dildora, B. CHICKENPOX, in Proceedings of International Conference on Scientific Research in Natural and Social Sciences, Toronto, Canada, pp. 202–205. (2023).
Kujur, A., Kiran, K. A. & Kujur, M. An Epidemiological Study of Outbreak Investigation of Chickenpox in remote hamlets of a tribal state in India. Cureus 14 (6), 1–11. https://doi.org/10.7759/cureus.26454 (2022).
Verma, R., Bairwa, M., Chawla, S., Prinja, S. & Rajput, M. Should Chickenpox vaccine be included in the national immunization schedule in India? Hum. Vaccin. 7 (8), 874–877. https://doi.org/10.4161/hv.7.8.15685 (2011).
Chovatiya, R. & Silverberg, J. I. Inpatient morbidity and mortality of measles in the United States. PLOS ONE. 15, 1–13. https://doi.org/10.1371/journal.pone.0231329 (2020). no. 4.
Rabaan, A. A. et al. Updates on measles incidence and eradication: emphasis on the immunological aspects of Measles infection. Medicina 58, 1–20. https://doi.org/10.3390/medicina58050680 (2022). no. 5.
Gay, N. J. The theory of Measles Elimination: implications for the design of elimination strategies. J. Infect. Dis. 189, 27–35. https://doi.org/10.1086/381592 (2004).
Thornhill, J. P. et al. Monkeypox Virus infection in humans across 16 countries – April-June 2022. N Engl. J. Med. 387 (8), 679–691. https://doi.org/10.1056/NEJMoa2207323 (2022).
Mitjà, O. et al. Monkeypox, Lancet, vol. 401, no. 10370, pp. 60–74, doi: (2023). https://doi.org/10.1016/S0140-6736(22)02075-X
Shchelkunov, S. N. et al. Analysis of the monkeypox virus genome. Virology 297 (2), 172–194. https://doi.org/10.1006/viro.2002.1446 (2002).
Nguyen, P. Y., Ajisegiri, W., Costantino, V., Chughtai, A. A. & MacIntyre, C. R. Reemergence of human monkeypox and declining Population Immunity in the context of urbanization, Nigeria, 2017–2020. Emerg. Infect. Dis. 27 (4), 1007–1014 (2021).
Doucleff, M. The spread of monkeypox was predicted by scientists in 1988: Goats and Soda : NPR. Accessed: Aug. 28, 2022. [Online]. Available: https://www.npr.org/sections/goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-monkeypox-in-1988-heres-why-they-were-right
Multi-country monkeypox outbreak in non-endemic countries. Accessed: Aug. 28. [Online]. Available: (2022). https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385
Bunge, E. M. et al. The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Negl. Trop. Dis. 16, 1–20. https://doi.org/10.1371/journal.pntd.0010141 (2022). no. 2.
Mansour, R. F., Althubiti, S. A. & Alenezi, F. Computer Vision with Machine Learning enabled skin lesion classification model. Comput. Mater. Contin. 73 (1), 849–864. https://doi.org/10.32604/cmc.2022.029265 (2022).
Dong, S., Wang, P. & Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 40, 1–22. https://doi.org/10.1016/j.cosrev.2021.100379 (2021).
Abdullah, A. A., Hassan, M. M. & Mustafa, Y. T. A review on bayesian deep learning in Healthcare: Applications and challenges. IEEE Access. 10, 36538–36562. https://doi.org/10.1109/ACCESS.2022.3163384 (2022).
Yan, K., Wang, X., Lu, L. & Summers, R. M. DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging. 5 (03), 1–11. https://doi.org/10.1117/1.jmi.5.3.036501 (2018).
Kijowski, R., Liu, F., Caliva, F. & Pedoia, V. Deep learning for Lesion Detection, Progression, and prediction of Musculoskeletal Disease. J. Magn. Reson. Imaging. 52 (6), 1607–1619. https://doi.org/10.1002/jmri.27001 (2020).
Anupama, C. S. S. et al. Deep learning with backtracking search optimization based skin lesion diagnosis model. Comput. Mater. Contin. 70 (1), 1297–1313. https://doi.org/10.32604/cmc.2022.018396 (2021).
Talo, M., Baloglu, U. B., Yıldırım, Ö. & Rajendra Acharya, U. Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54, 176–188. https://doi.org/10.1016/j.cogsys.2018.12.007 (2019).
Ozturk, T. et al. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 1–11. https://doi.org/10.1016/j.compbiomed.2020.103792 (2020).
Kott, O. et al. Development of a deep learning algorithm for the histopathologic diagnosis and Gleason grading of prostate Cancer biopsies: a pilot study. Eur. Urol. Focus. 7 (2), 347–351. https://doi.org/10.1016/j.euf.2019.11.003 (2021).
Shkolyar, E. et al. Augmented bladder tumor detection using deep learning. Eur. Urol. 76 (6), 714–718. https://doi.org/10.1016/j.eururo.2019.08.032 (2019).
Ahmed, F., Fatima, A., Mamoon, M. & Khan, S. Identification of the Diabetic Retinopathy Using ResNet-18, in 2nd International Conference on Cyber Resilience, ICCR Dubai, United Arab Emirates: IEEE, 2024, pp. 1–6. doi: (2024). https://doi.org/10.1109/ICCR61006.2024.10532925
Menaouer, B., Zoulikha, D., El-Houda, K. N., Mohammed, S. & Matta, N. Coronavirus pneumonia classification using X-Ray and CT scan images with deep convolutional neural network models. J. Inf. Technol. Res. 15 (1), 1–23. https://doi.org/10.4018/jitr.299391 (2022).
Menaouer, B., El-Houda, K. N., Zoulikha, D., Mohammed, S. & Matta, N. Detection and classification of brain tumors from MRI images using a deep convolutional neural Network Approach. Int. J. Softw. Innov. 10 (1), 1–25. https://doi.org/10.4018/IJSI.293269 (2022).
Hesamian, M. H., Jia, W., He, X. & Kennedy, P. Deep learning techniques for Medical Image Segmentation: achievements and challenges. J. Digit. Imaging. 32 (4), 582–596. https://doi.org/10.1007/s10278-019-00227-x (2019).
Roth, H. R. et al. Deep learning and its application to medical image segmentation. Med. IMAGING Technol. 36 (2), 63–71. https://doi.org/10.11409/mit.36.63 (2018).
Mohammed, S. S., Menaouer, B., Zohra, A. F. F. & Nada, M. Sentiment analysis of COVID-19 tweets using adaptive neuro-fuzzy inference system models. Int. J. Softw. Sci. Comput. Intell. 14 (1), 1–20. https://doi.org/10.4018/IJSSCI.300361 (2022).
Shen, D., Wu, G. & Suk, H. I. Deep learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 176 (1), 1–35. https://doi.org/10.1146/annurev-bioeng-071516-044442.Deep (2017).
Meijering, E. A bird ’ s-eye view of deep learning in bioimage analysis. Comput. Struct. Biotechnol. J. 18, 2312–2325. https://doi.org/10.1016/j.csbj.2020.08.003 (2020).
Jia, X., Ren, L. & Cai, J. Clinical implementation of AI technologies will require interpretable AI models. Med. Phys. 47 (1), 1–4. https://doi.org/10.1002/mp.13891 (2020).
Karimkhani, C. et al. Global skin disease morbidity and mortality an update from the global burden of disease study 2013. JAMA Dermatology. 153 (5), 406–412. https://doi.org/10.1001/jamadermatol.2016.5538 (2017).
Seth, D., Cheldize, K., Brown, D. & Freeman, E. E. Global burden of skin disease: inequities and innovations. Curr. Dermatol. Rep. 6 (3), 204–210. https://doi.org/10.1007/s13671-017-0192-7 (2017).
Chang, X. & Chen, M. Research progress of varicella and its immunoprophylaxis. Front. Med. Sci. Res. 4 (5), 36–39. https://doi.org/10.25236/FMSR.2022.040507 (2022).
Wutzler, P. et al. Varicella vaccination – the global experience. Expert Rev. Vaccines. 16 (8), 833–843 (2017).
Roy, K. et al. Skin disease detection based on different segmentation techniques, in International Conference on Opto-Electronics and Applied Optics, Optronix 2019, Kolkata, India: IEEE, pp. 1–5. doi: (2019). https://doi.org/10.1109/OPTRONIX.2019.8862403
Daud, M. R. H. M., Yaacob, N. A., Ibrahim, M. I. & Muhammad, W. A. R. W. Five-Year Trend of measles and its Associated factors inPahang, Malaysia: a Population-based study. Int. J. Environ. Res. Public. Health. 19, 1–10 (2022).
VON MAGNUS, S., ANDERSEN, E. K., PETERSEN, K. B. & AKSEI, B. A. A POX-LIKE DISEASE IN CYNOMOLGUS MONKEYS, FROM STATENS SEHUMINSTITUT, DIRECTOH J. OHSKOV, M.D., pp. 156–176, (1959).
Ladnyj, I. D., Ziegler, P. & Kima, E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 46 (5), 593–597 (1972).
Reynolds, M. G., Doty, J. B., McCollum, A. M., Olson, V. A. & Nakazawa, Y. Monkeypox re-emergence in Africa: a call to expand the concept and practice of one health. Expert Rev. Anti Infect. Ther. 17 (2), 129–139. https://doi.org/10.1080/14787210.2019.1567330 (2019).
Koenig, K. L., Beÿ, C. K. & Marty, A. M. Monkeypox 2022 identify-Isolate-Inform: a 3I Tool for frontline clinicians for a zoonosis with escalating human community transmission. One Heal. 15, 1–13. https://doi.org/10.1016/j.onehlt.2022.100410 (2022).
W. H. O. (WHO), Multi-country monkeypox outbreak in non-endemic countries: Update. Accessed: Sep. 04, 2022. [Online]. Available: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON388
Ali, S. N. et al. Monkeypox Skin Lesion Detection Using Deep Learning Models: A Feasibility Study, Comput. Vis. Pattern Recognit., pp. 2–5, [Online]. Available: (2022). http://arxiv.org/abs/2207.03342
Gülmez, B. MonkeypoxHybridNet: A hybrid deep convolutional neural network model for monkeypox disease detection, Int. Res. Eng. Sci., vol. 3, pp. 49–64, [Online]. Available: (2022). https://desytamara.blogspot.com/2017/11/sistem-pelayanan-perpustakaan-dan-jenis.html%0Ahttps://lambeturah.id/pengertian-website-secara-umum-dan-menurut-para-ahli/%0Ahttps://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf2252
Irmak, M. C., Aydın, T. & Yağanoğlu, M. Monkeypox Skin Lesion Detection with MobileNetV2 and VGGNet Models, in TIPTEKNO 2022 – Medical Technologies Congress, Proceedings, Antalya, Turkey, pp. 2–5. doi: (2022). https://doi.org/10.1109/TIPTEKNO56568.2022.9960194
Singh, U. & Songare, L. S. Analysis and Detection of Monkeypox using the GoogLeNet Model, in In Proceedings of the International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 2022, pp. 1000–1008. doi: (2022). https://doi.org/10.1109/ICACRS55517.2022.10029125
Sharma, K., Kishlay, V., Kumar & Mittal, M. MonkeyPox, Measles and ChickenPox Detection through Image-Processing using Residual Neural Network (ResNet), in 6th International Conference on Information Systems and Computer Networks, ISCON 2023, Mathura, India: IEEE, 2023, pp. 1–6. doi: (2023). https://doi.org/10.1109/ISCON57294.2023.10112085
Sethy, P. K. et al. Detection of Monkeypox Based on Improved Darknet19, in IEEE 8th International Conference for Convergence in Technology, I2CT 2023, Pune, India: IEEE, 2023, pp. 1–3. doi: (2023). https://doi.org/10.1109/I2CT57861.2023.10126170
Uysal, F. Detection of Monkeypox Disease from Human skin images with a Hybrid Deep Learning Model. Diagnostics 13 (10), 1–23. https://doi.org/10.3390/diagnostics13101772 (2023).
Ariansyah, M. H., Winarno, S. & Sani, R. R. Monkeypox and Measles Detection using CNN with VGG-16 transfer learning. J. Comput. Res. Innov. 8 (1), 32–44. https://doi.org/10.3390/s23041783 (2023).
Kundu, D., Siddiqi, U. R. & Rahman, M. M. Vision Transformer based Deep Learning Model for Monkeypox Detection, in 25th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh: IEEE, pp. 1021–1026. doi: (2023). https://doi.org/10.1109/iccit57492.2022.10054797
Akram, A. et al. SkinMarkNet: an automated approach for prediction of monkeyPox using image data augmentation with deep ensemble learning models. Multimed Tools Appl. 1–17. https://doi.org/10.1007/s11042-024-19862-w (2024).
Monkeypox Skin Images Dataset (MSID). | Kaggle. Accessed: Aug. 28, 2022. [Online]. Available: https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition, in Published as a conference paper at ICLR, pp. 1–14. (2015).
Althubiti, S. A., Alenezi, F., Shitharth, S., Sangeetha, K. & Reddy, C. V. S. Circuit Manufacturing Defect Detection Using VGG16 Convolutional Neural Networks, Wirel. Commun. Mob. Comput., vol. pp. 1–10, 2022, doi: (2022). https://doi.org/10.1155/2022/1070405
Doshi-Velez, F. & Kim, B. Towards a Rigorous Science of interpretable machine learning. arXiv Prepr, pp. 1–13, (2017).
Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One. 10 (7), 1–46. https://doi.org/10.1371/journal.pone.0130140 (2015).
Böhle, M., Eitel, F., Weygandt, M. & Ritter, K. Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification. Front. Aging Neurosci. 11, 1–17. https://doi.org/10.3389/fnagi.2019.00194 (2019).
Huang, X., Jamonnak, S., Zhao, Y., Wu, T. H. & Xu, W. A visual designer of layer-wise relevance propagation models. Eurographics Conf. Vis. 40 (3), 227–238 (2021).
Seliya, N., Khoshgoftaar, T. M. & Van Hulse, J. A study on the relationships of classifier performance metrics, in 21st IEEE International Conference on Tools with Artificial Intelligence, Newark, NJ, USA, pp. 59–66. doi: (2009). https://doi.org/10.1109/ICTAI.2009.25