Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).
Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).
Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).
Daly, E. Z. et al. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. Oikos 2023, e09645 (2023).
González-Tokman, D. et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 95, 802–821 (2020).
Diamond, S. E. Contemporary climate-driven range shifts: putting evolution back on the table. Funct. Ecol. 32, 1652–1665 (2018).
Harvey, J. A., Heinen, R., Gols, R. & Thakur, M. P. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob. Change Biol. 26, 6685–6701 (2020).
Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).
Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).
Diagne, C. et al. The economic costs of biological invasions in Africa: a growing but neglected threat? NeoBiota 67, 11–51 (2021).
CGIAR Research Program on Climate Change & Agriculture and Food Security (CCAFS). CGIAR Research Program on Climate Change, Agriculture and Food Security Annual Report 2020. https://cgspace.cgiar.org/handle/10568/114818 (2021).
Adler, C. et al. Changes in the distribution and pest risk of stored product insects in Europe due to global warming: need for pan-European pest monitoring and improved food-safety. J. Stored Prod. Res. 97, 101977 (2022).
Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).
Macfadyen, S., McDonald, G. & Hill, M. P. From species distributions to climate change adaptation: knowledge gaps in managing invertebrate pests in broad-acre grain crops. Agric. Ecosyst. Environ. 253, 208–219 (2018).
Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41, 726–736 (2018).
Hoffmann, A. A. Rapid adaptation of invertebrate pests to climatic stress? Curr. Opin. Insect Sci. 21, 7–13 (2017).
Helmuth, B., Kingsolver, J. G. & Carrington, E. Biophysics, physiological ecology, and climate change: does mechanism matter? Annu. Rev. Physiol. 67, 177–201 (2005).
Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).
Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis online edn (Oxford University Press, Oxford, 2009).
Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution online edn (Oxford University Press, 2002).
Berger, D., Stångberg, J., Baur, J. & Walters, R. J. Elevated temperature increases genome-wide selection on de novo mutations. Proc. R. Soc. B Biol. Sci. 288, 20203094 (2021).
Kellermann, V., van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).
Bloom, J. D. et al. Thermodynamic prediction of protein neutrality. Proc. Natl. Acad. Sci. USA. 102, 606–611 (2005).
Agozzino, L. & Dill, K. A. Protein evolution speed depends on its stability and abundance and on chaperone concentrations. Proc. Natl. Acad. Sci. USA 115, 9092–9097 (2018).
Chen, P. & Shakhnovich, E. I. Thermal adaptation of viruses and bacteria. Biophys. J. 98, 1109–1118 (2010).
Parratt, S. R. et al. Temperatures that sterilize males better match global species distributions than lethal temperatures. Nat. Clim. Change 11, 481–484 (2021).
Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).
Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Extreme escalation of heat failure rates in ectotherms with global warming. Nature 611, 93–98 (2022).
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105, 6668–6672 (2008).
Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).
Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity: experimental evolution in variable environments. J. Evol. Biol. 15, 173–190 (2002).
Conover, D. O. & Schultz, E. T. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 10, 248–252 (1995).
Murren, C. J. et al. Evolutionary change in continuous reaction norms. Am. Nat. 183, 453–467 (2014).
Feder, M. E., Bennett, A. F. & Huey, R. B. Evolitionary physiology1. Annu Rev. Ecol. Evol. Syst. 31, 315–341 (2000).
Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, E140–E150 (2019).
Skoracka, A. et al. Effective specialist or jack of all trades? experimental evolution of a crop pest in fluctuating and stable environments. Evol. Appl. 15, 1639–1652 (2022).
Alexandridis, N. et al. Archetype models upscale understanding of natural pest control response to land-use change. Ecol. Appl. 32, e2696 (2022).
Towards an interactive, process‐based approach to understanding range shifts: developmental and environmental dependencies matter. J. Space Ecol. 42, 201–210 (2019).
Barrett, R. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).
Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).
Figueiredo, L., Krauss, J., Steffan-Dewenter, I. & Sarmento Cabral, J. Understanding extinction debts: spatio–temporal scales, mechanisms and a roadmap for future research. Ecography 42, 1973–1990 (2019).
Chen, Y. et al. The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability. Nat. Commun. 13, 4821 (2022).
Nadeau, C. P., Urban, M. C. & Bridle, J. R. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends Ecol. Evol. 32, 786–800 (2017).
Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).
Evans, M. G. & Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935).
Houle, D. Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45, 630 (1991).
Jong, Gde & Noordwijk, A. J. van. Acquisition and allocation of resources: genetic (CO) variances, selection, and life histories. Am. Nat. 139, 749–770 (1992).
Tuda, M., Kagoshima, K., Toquenaga, Y. & Arnqvist, G. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors. PLoS One 9, e106268 (2014).
Roff, D. Evolution Of Life Histories: Theory and Analysis 1st edn, Vol. 548 (Springer Science & Business Media, 1993).
Stearns, S. C. The Evolution Of Life Histories (Oxford University Press, 2024).
Cornish-Bowden, A. Kinetics, Enzymes. In Encyclopedia of Bioprocess Technology (ed. Borden, C. A.) (John Wiley & Sons, Inc., 2002).
Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18, 252–256 (2004).
Gillooly, J. F. et al. Response to clarke and fraser: effects of temperature on metabolic rate. Funct. Ecol. 20, 400–404 (2006).
Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).
Glazier, D. S. Beyond the: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol. Rev. 80, 611 (2005).
Berger, D. et al. Intraspecific variation in body size and the rate of reproduction in female insects—adaptive allometry or biophysical constraint? J. Anim. Ecol. 81, 1244–1258 (2012).
Kozlowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).
Martin, T. L. & Huey, R. B. Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).
Echave, J. & Wilke, C. O. Biophysical models of protein evolution: understanding the patterns of evolutionary sequence divergence. Annu. Rev. Biophys. 46, 85–103 (2017).
Bershtein, S., Serohijos, A. W. & Shakhnovich, E. I. Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations. Curr. Opin. Struct. Biol. 42, 31–40 (2017).
Glazier, D. S. Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol. Rev. 90, 377–407 (2015).
Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B Biol. Sci. 267, 739–745 (2000).
Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes. Proc. Natl. Acad. Sci. USA 108, 17876–17882 (2011).
Taipale, M., Jarosz, D. F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528 (2010).
Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).
Kingsolver, J. G. & Woods, H. A. Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. 187, 283–294 (2016).
Clarke, A. Temperature and the metabolic theory of ecology. Funct. Ecol. 20, 405–412 (2006).
Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).
Chown, S. L. et al. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43, 3–15 (2010).
Fox, C. W. Multiple mating, lifetime fecundity and female mortality of the bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Funct. Ecol. 7, 203–208 (1993).
Immonen, E., Berger, D., Sayadi, A., Liljestrand-Rönn, J. & Arnqvist, G. An experimental test of temperature-dependent selection on mitochondrial haplotypes in Callosobruchus maculatus seed beetles. Ecol. Evol. 10, 11387–11398 (2020).
Collyer, M. L. & Adams, D. C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).
Umeozor, O. C. Effect of the Infection of Callosobruchus maculatus (Fab.) on the Weight Loss of Stored Cowpea (Vigna unguiculata (L.) Walp). https://www.bioline.org.br/ja (2005).
Dent, D. & Binks, R. H. Insect Pest Management 3rd edn (CABI, 2020).
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).
Chown, S. L. & Gaston, K. J. Body size variation in insects: a macroecological perspective. Biol. Rev. 85, 139–169 (2010).
Urban, M. C. et al. Coding for life: designing a platform for projecting and protecting global biodiversity. BioScience 72, 91–104 (2022).
Segoli, M. et al. Trait-based approaches to predicting biological control success: challenges and prospects. Trends Ecol. Evol. 38, 802–811 (2023).
Angilletta, M. J., Huey, R. B. & Frazier, M. R. Thermodynamic effects on organismal performance: is hotter better? Physiol. Biochem. Zool. 83, 197–206 (2010).
Berger, D., Walters, R. & Gotthard, K. What limits insect fecundity? body size- and temperature-dependent egg maturation and oviposition in a butterfly. Funct. Ecol. 22, 523–529 (2008).
Frazier, M. R., Huey, R. B. & Berrigan, D. Thermodynamics constrains the evolution of insect population growth rates: “warmer is better. Am. Nat. 168, 512–520 (2006).
Klepsatel, P., Gáliková, M., Xu, Y. & Kühnlein, R. P. Thermal stress depletes energy reserves in Drosophila. Sci. Rep. 6, 33667 (2016).
Berger, D. et al. Intralocus sexual conflict and the tragedy of the commons in seed beetles. Am. Nat. 188, E98–E112 (2016).
Berger, D., Berg, E. C., Widegren, W., Arnqvist, G. & Maklakov, A. A. Multivariate intralocus sexual conflict in seed beetles: sexual conflict and life-history pleiotropy. Evolution 68, 3457–3469 (2014).
Mallard, F., Nolte, V., Tobler, R., Kapun, M. & Schlötterer, C. A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biol. 19, 119 (2018).
Rogell, B. et al. Sex-dependent evolution of life-history traits following adaptation to climate warming. Funct. Ecol. 28, 469–478 (2014).
Ivimey-Cook, E. R., Piani, C., Hung, W.-T. & Berg, E. C. Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus. J. Evol. Biol. 37, 1–13 (2024).
Angilletta, Jr., Michael, J. & Dunham, A. E. The temperature‐size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).
Zuo, W., Moses, M. E., West, G. B., Hou, C. & Brown, J. H. A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc. R. Soc. B Biol. Sci. 279, 1840–1846 (2011).
Bochdanovits, Z. & de Jong, G. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes. Evolution 57, 1829–1836 (2003).
Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).
Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).
Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239 (1997).
Blanckenhorn, W. U. Bergmann and converse bergmann latitudinal clines in arthropods: two nds of a continuum? Integr. Comp. Biol. 44, 413–424 (2004).
Horne, C. R., Hirst, A. G. & Atkinson, D. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol. Lett. 18, 327–335 (2015).
Stillwell, R. C., Wallin, W. G., Hitchcock, L. J. & Fox, C. W. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle. Oecologia 153, 309–321 (2007).
Garcia-Robledo, C., Baer, C. S., Lippert, K. & Sarathy, V. Evolutionary history, not ecogeographic rules, explains size variation of tropical insects along elevational gradients. Funct. Ecol. 34, 2513–2523 (2020).
Whitlock, M. C. & Agrawal, A. F. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 63, 569–582 (2009).
Arnqvist, G. & Rowe, L. Sexual conflict. Trend Ecol. Evol. 18, 41–47 (2005).
Kokko, H. & Brooks, R. Sexy to die for? sexual selection and the risk of extinction. Ann. Zool. Fenn. 40, 207–219 (2003).
García‐Roa, R., Garcia‐Gonzalez, F., Noble, D. W. A. & Carazo, P. Temperature as a modulator of sexual selection. Biol. Rev. 95, 1607–1629 (2020).
Parrett, J. M., Mann, D. J., Chung, A. Y. C., Slade, E. M. & Knell, R. J. Sexual selection predicts the persistence of populations within altered environments. Ecol. Lett. 22, 1629–1637 (2019).
Plesnar-Bielak, A., Skrzynecka, A. M., Prokop, Z. M. & Radwan, J. Mating system affects population performance and extinction risk under environmental challenge. Proc. R. Soc. B Biol. Sci. 279, 4661–4667 (2012).
Martinossi‐Allibert, I., Thilliez, E., Arnqvist, G. & Berger, D. Sexual selection, environmental robustness, and evolutionary demography of maladapted populations: a test using experimental evolution in seed beetles. Evol. Appl. 12, 1371–1384 (2019).
Baur, J., Jagusch, D., Michalak, P., Koppik, M. & Berger, D. The mating system affects the temperature sensitivity of male and female fertility. Funct. Ecol. 36, 92–106 (2022).
Baur, J., Zwoinska, M., Koppik, M., Snook, R. R. & Berger, D. Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evol. Lett. 8, qrad007 (2023).
Berger, D. & Liljestrand-Rönn, J. Environmental complexity mitigates the demographic impact of sexual selection. Ecol. Lett. 27, e14355 (2024).
Martin. Goal 2: Zero Hunger. United Nations Sustainable Development https://www.un.org/sustainabledevelopment/hunger/ (2022).
Climate Change 2022. Impacts, Adaptation and Vulnerability. https://www.ipcc.ch/report/ar6/wg2/ (2022).
Cabral, J. S. et al. The road to integrate climate change effects on land-use change in regional biodiversity models. British Ecol. Soc. https://doi.org/10.22541/au.164608831.19029067/v1 (2022).
Bocedi, G. et al. RangeShifter 2.0: an extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44, 1453–1462 (2021).
Hagen, O. et al. gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biol. 19, e3001340 (2021).
Dormann, C. F. et al. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39, 2119–2131 (2012).
Mouquet, N. et al. REVIEW: Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310 (2015).
Zurell, D. et al. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol. 22, 2651–2664 (2016).
Anderson, R., Bayer, P. E. & Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 56, 197–202 (2020).
Garcia-Costoya, G., Williams, C. E., Faske, T. M., Moorman, J. D. & Logan, M. L. Evolutionary constraints mediate extinction risk under climate change. Ecol. Lett. 26, 529–539 (2023).
Beck, C. W. A Handbook on Bean Beetles, Callosobruchus maculatus. https://www.beanbeetle.org/new_website/wp-content/images/handbook.pdf (2014).
Berger, D. et al. Interalocus sexual conflict and environmental stress: sex, genes, and concflict in stressful environmentes. Evolution 68, 2184–96 (2014)
Babraham Bioinformatics. FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2024).
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinforma. Oxf. Engl. 32, 3047–3048 (2016).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Arnqvist, G. et al. A chromosome-level assembly of the seed beetle Callosobruchus maculatus genome with annotation of its repetitive elements. G3 GenesGenomesGenetics 14, jkad266 (2023)
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a python framework to work with high-throughput sequencing data. Bioinforma. Oxf. Engl. 31, 166–169 (2015).
R Core Team. R: A Language and Environment for Statistical Computing. https://people.math.ethz.ch (2020).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinforma. Oxf. Engl. 23, 257–258 (2007).
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
Bates, D. Mixed Models in R Using the lme4 Package Part 4: Inference Based on Profiled Deviance. https://people.math.ethz.ch (2023).
Immonen, E., Rönn, J., Watson, C., Berger, D. & Arnqvist, G. Complex mitonuclear interactions and metabolic costs of mating in male seed beetles. J. Evol. Biol. 29, 360–370 (2016).
Arnqvist, G., Rönn, J., Watson, C., Goenaga, J. & Immonen, E. Concerted evolution of metabolic rate, economics of mating, ecology, and pace of life across seed beetles. Proc. Natl. Acad. Sci. USA 119, e2205564119 (2022).
Jackai, L. E. N. & Daoust, R. A. Insect pests of cowpeas. Annu. Rev. Entomol. 31, 95–119 (1986).
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis 1st ed. 2009. Corr. 3rd printing 2010 edition (Springer-Verlag New York, 2016).
Arnold, J. B. et al. ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’ https://orcid.org/0000-0001-9953-3904 (2024).