Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).

Article 
MATH 

Google Scholar
 

Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).

Article 
MATH 

Google Scholar
 

Daly, E. Z. et al. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. Oikos 2023, e09645 (2023).

González-Tokman, D. et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 95, 802–821 (2020).

Article 
PubMed 
MATH 

Google Scholar
 

Diamond, S. E. Contemporary climate-driven range shifts: putting evolution back on the table. Funct. Ecol. 32, 1652–1665 (2018).

Article 
MATH 

Google Scholar
 

Harvey, J. A., Heinen, R., Gols, R. & Thakur, M. P. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob. Change Biol. 26, 6685–6701 (2020).

Article 
ADS 
MATH 

Google Scholar
 

Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

Article 
PubMed 
MATH 

Google Scholar
 

Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Diagne, C. et al. The economic costs of biological invasions in Africa: a growing but neglected threat? NeoBiota 67, 11–51 (2021).

Article 
MATH 

Google Scholar
 

CGIAR Research Program on Climate Change & Agriculture and Food Security (CCAFS). CGIAR Research Program on Climate Change, Agriculture and Food Security Annual Report 2020. https://cgspace.cgiar.org/handle/10568/114818 (2021).

Adler, C. et al. Changes in the distribution and pest risk of stored product insects in Europe due to global warming: need for pan-European pest monitoring and improved food-safety. J. Stored Prod. Res. 97, 101977 (2022).

Article 
MATH 

Google Scholar
 

Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

Article 
PubMed 
MATH 

Google Scholar
 

Macfadyen, S., McDonald, G. & Hill, M. P. From species distributions to climate change adaptation: knowledge gaps in managing invertebrate pests in broad-acre grain crops. Agric. Ecosyst. Environ. 253, 208–219 (2018).

Article 

Google Scholar
 

Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41, 726–736 (2018).

Article 
ADS 
MATH 

Google Scholar
 

Hoffmann, A. A. Rapid adaptation of invertebrate pests to climatic stress? Curr. Opin. Insect Sci. 21, 7–13 (2017).

Article 
PubMed 
MATH 

Google Scholar
 

Helmuth, B., Kingsolver, J. G. & Carrington, E. Biophysics, physiological ecology, and climate change: does mechanism matter? Annu. Rev. Physiol. 67, 177–201 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis online edn (Oxford University Press, Oxford, 2009).

Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution online edn (Oxford University Press, 2002).

Berger, D., Stångberg, J., Baur, J. & Walters, R. J. Elevated temperature increases genome-wide selection on de novo mutations. Proc. R. Soc. B Biol. Sci. 288, 20203094 (2021).

Article 

Google Scholar
 

Kellermann, V., van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

Article 

Google Scholar
 

Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).

Article 
PubMed 
MATH 

Google Scholar
 

Bloom, J. D. et al. Thermodynamic prediction of protein neutrality. Proc. Natl. Acad. Sci. USA. 102, 606–611 (2005).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Agozzino, L. & Dill, K. A. Protein evolution speed depends on its stability and abundance and on chaperone concentrations. Proc. Natl. Acad. Sci. USA 115, 9092–9097 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Chen, P. & Shakhnovich, E. I. Thermal adaptation of viruses and bacteria. Biophys. J. 98, 1109–1118 (2010).

Article 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Parratt, S. R. et al. Temperatures that sterilize males better match global species distributions than lethal temperatures. Nat. Clim. Change 11, 481–484 (2021).

Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).

Article 
PubMed 
MATH 

Google Scholar
 

Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Extreme escalation of heat failure rates in ectotherms with global warming. Nature 611, 93–98 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105, 6668–6672 (2008).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).

Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity: experimental evolution in variable environments. J. Evol. Biol. 15, 173–190 (2002).

Article 
MATH 

Google Scholar
 

Conover, D. O. & Schultz, E. T. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 10, 248–252 (1995).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Murren, C. J. et al. Evolutionary change in continuous reaction norms. Am. Nat. 183, 453–467 (2014).

Article 
PubMed 
MATH 

Google Scholar
 

Feder, M. E., Bennett, A. F. & Huey, R. B. Evolitionary physiology1. Annu Rev. Ecol. Evol. Syst. 31, 315–341 (2000).

Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, E140–E150 (2019).

Article 
PubMed 

Google Scholar
 

Skoracka, A. et al. Effective specialist or jack of all trades? experimental evolution of a crop pest in fluctuating and stable environments. Evol. Appl. 15, 1639–1652 (2022).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Alexandridis, N. et al. Archetype models upscale understanding of natural pest control response to land-use change. Ecol. Appl. 32, e2696 (2022).

Towards an interactive, process‐based approach to understanding range shifts: developmental and environmental dependencies matter. J. Space Ecol. 42, 201–210 (2019).

Barrett, R. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

Article 
PubMed 

Google Scholar
 

Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Figueiredo, L., Krauss, J., Steffan-Dewenter, I. & Sarmento Cabral, J. Understanding extinction debts: spatio–temporal scales, mechanisms and a roadmap for future research. Ecography 42, 1973–1990 (2019).

Article 
ADS 

Google Scholar
 

Chen, Y. et al. The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability. Nat. Commun. 13, 4821 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Nadeau, C. P., Urban, M. C. & Bridle, J. R. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends Ecol. Evol. 32, 786–800 (2017).

Article 
PubMed 

Google Scholar
 

Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Evans, M. G. & Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935).

Article 
CAS 
MATH 

Google Scholar
 

Houle, D. Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45, 630 (1991).

Article 
PubMed 
MATH 

Google Scholar
 

Jong, Gde & Noordwijk, A. J. van. Acquisition and allocation of resources: genetic (CO) variances, selection, and life histories. Am. Nat. 139, 749–770 (1992).

Article 
MATH 

Google Scholar
 

Tuda, M., Kagoshima, K., Toquenaga, Y. & Arnqvist, G. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors. PLoS One 9, e106268 (2014).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Roff, D. Evolution Of Life Histories: Theory and Analysis 1st edn, Vol. 548 (Springer Science & Business Media, 1993).

Stearns, S. C. The Evolution Of Life Histories (Oxford University Press, 2024).

Cornish-Bowden, A. Kinetics, Enzymes. In Encyclopedia of Bioprocess Technology (ed. Borden, C. A.) (John Wiley & Sons, Inc., 2002).

Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18, 252–256 (2004).

Article 
MATH 

Google Scholar
 

Gillooly, J. F. et al. Response to clarke and fraser: effects of temperature on metabolic rate. Funct. Ecol. 20, 400–404 (2006).

Article 
MATH 

Google Scholar
 

Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Glazier, D. S. Beyond the: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol. Rev. 80, 611 (2005).

Article 
PubMed 
MATH 

Google Scholar
 

Berger, D. et al. Intraspecific variation in body size and the rate of reproduction in female insects—adaptive allometry or biophysical constraint? J. Anim. Ecol. 81, 1244–1258 (2012).

Article 
PubMed 
MATH 

Google Scholar
 

Kozlowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).

Article 
MATH 

Google Scholar
 

Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Martin, T. L. & Huey, R. B. Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).

Article 
PubMed 
MATH 

Google Scholar
 

Echave, J. & Wilke, C. O. Biophysical models of protein evolution: understanding the patterns of evolutionary sequence divergence. Annu. Rev. Biophys. 46, 85–103 (2017).

Article 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Bershtein, S., Serohijos, A. W. & Shakhnovich, E. I. Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations. Curr. Opin. Struct. Biol. 42, 31–40 (2017).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Glazier, D. S. Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol. Rev. 90, 377–407 (2015).

Article 
PubMed 
MATH 

Google Scholar
 

Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B Biol. Sci. 267, 739–745 (2000).

Article 
CAS 

Google Scholar
 

Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes. Proc. Natl. Acad. Sci. USA 108, 17876–17882 (2011).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Taipale, M., Jarosz, D. F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528 (2010).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Kingsolver, J. G. & Woods, H. A. Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. 187, 283–294 (2016).

Article 
PubMed 
MATH 

Google Scholar
 

Clarke, A. Temperature and the metabolic theory of ecology. Funct. Ecol. 20, 405–412 (2006).

Article 
MATH 

Google Scholar
 

Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).

Article 
PubMed 
MATH 

Google Scholar
 

Chown, S. L. et al. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43, 3–15 (2010).

Article 
MATH 

Google Scholar
 

Fox, C. W. Multiple mating, lifetime fecundity and female mortality of the bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Funct. Ecol. 7, 203–208 (1993).

Article 

Google Scholar
 

Immonen, E., Berger, D., Sayadi, A., Liljestrand-Rönn, J. & Arnqvist, G. An experimental test of temperature-dependent selection on mitochondrial haplotypes in Callosobruchus maculatus seed beetles. Ecol. Evol. 10, 11387–11398 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Collyer, M. L. & Adams, D. C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).

Article 
MATH 

Google Scholar
 

Umeozor, O. C. Effect of the Infection of Callosobruchus maculatus (Fab.) on the Weight Loss of Stored Cowpea (Vigna unguiculata (L.) Walp). https://www.bioline.org.br/ja (2005).

Dent, D. & Binks, R. H. Insect Pest Management 3rd edn (CABI, 2020).

Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Chown, S. L. & Gaston, K. J. Body size variation in insects: a macroecological perspective. Biol. Rev. 85, 139–169 (2010).

Article 
PubMed 
MATH 

Google Scholar
 

Urban, M. C. et al. Coding for life: designing a platform for projecting and protecting global biodiversity. BioScience 72, 91–104 (2022).

Article 
MATH 

Google Scholar
 

Segoli, M. et al. Trait-based approaches to predicting biological control success: challenges and prospects. Trends Ecol. Evol. 38, 802–811 (2023).

Article 
PubMed 
MATH 

Google Scholar
 

Angilletta, M. J., Huey, R. B. & Frazier, M. R. Thermodynamic effects on organismal performance: is hotter better? Physiol. Biochem. Zool. 83, 197–206 (2010).

Article 
PubMed 

Google Scholar
 

Berger, D., Walters, R. & Gotthard, K. What limits insect fecundity? body size- and temperature-dependent egg maturation and oviposition in a butterfly. Funct. Ecol. 22, 523–529 (2008).

Article 

Google Scholar
 

Frazier, M. R., Huey, R. B. & Berrigan, D. Thermodynamics constrains the evolution of insect population growth rates: “warmer is better. Am. Nat. 168, 512–520 (2006).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Klepsatel, P., Gáliková, M., Xu, Y. & Kühnlein, R. P. Thermal stress depletes energy reserves in Drosophila. Sci. Rep. 6, 33667 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Berger, D. et al. Intralocus sexual conflict and the tragedy of the commons in seed beetles. Am. Nat. 188, E98–E112 (2016).

Article 
PubMed 
MATH 

Google Scholar
 

Berger, D., Berg, E. C., Widegren, W., Arnqvist, G. & Maklakov, A. A. Multivariate intralocus sexual conflict in seed beetles: sexual conflict and life-history pleiotropy. Evolution 68, 3457–3469 (2014).

Article 
PubMed 

Google Scholar
 

Mallard, F., Nolte, V., Tobler, R., Kapun, M. & Schlötterer, C. A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biol. 19, 119 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rogell, B. et al. Sex-dependent evolution of life-history traits following adaptation to climate warming. Funct. Ecol. 28, 469–478 (2014).

Article 

Google Scholar
 

Ivimey-Cook, E. R., Piani, C., Hung, W.-T. & Berg, E. C. Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus. J. Evol. Biol. 37, 1–13 (2024).

Article 
PubMed 

Google Scholar
 

Angilletta, Jr., Michael, J. & Dunham, A. E. The temperature‐size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).

Zuo, W., Moses, M. E., West, G. B., Hou, C. & Brown, J. H. A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc. R. Soc. B Biol. Sci. 279, 1840–1846 (2011).

Article 
MATH 

Google Scholar
 

Bochdanovits, Z. & de Jong, G. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes. Evolution 57, 1829–1836 (2003).

PubMed 
MATH 

Google Scholar
 

Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).

Article 
ADS 
MATH 

Google Scholar
 

Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239 (1997).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Blanckenhorn, W. U. Bergmann and converse bergmann latitudinal clines in arthropods: two nds of a continuum? Integr. Comp. Biol. 44, 413–424 (2004).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Horne, C. R., Hirst, A. G. & Atkinson, D. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol. Lett. 18, 327–335 (2015).

Article 
PubMed 

Google Scholar
 

Stillwell, R. C., Wallin, W. G., Hitchcock, L. J. & Fox, C. W. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle. Oecologia 153, 309–321 (2007).

Article 
ADS 
PubMed 

Google Scholar
 

Garcia-Robledo, C., Baer, C. S., Lippert, K. & Sarathy, V. Evolutionary history, not ecogeographic rules, explains size variation of tropical insects along elevational gradients. Funct. Ecol. 34, 2513–2523 (2020).

Article 

Google Scholar
 

Whitlock, M. C. & Agrawal, A. F. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 63, 569–582 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Arnqvist, G. & Rowe, L. Sexual conflict. Trend Ecol. Evol. 18, 41–47 (2005).

Kokko, H. & Brooks, R. Sexy to die for? sexual selection and the risk of extinction. Ann. Zool. Fenn. 40, 207–219 (2003).

MATH 

Google Scholar
 

García‐Roa, R., Garcia‐Gonzalez, F., Noble, D. W. A. & Carazo, P. Temperature as a modulator of sexual selection. Biol. Rev. 95, 1607–1629 (2020).

Parrett, J. M., Mann, D. J., Chung, A. Y. C., Slade, E. M. & Knell, R. J. Sexual selection predicts the persistence of populations within altered environments. Ecol. Lett. 22, 1629–1637 (2019).

Plesnar-Bielak, A., Skrzynecka, A. M., Prokop, Z. M. & Radwan, J. Mating system affects population performance and extinction risk under environmental challenge. Proc. R. Soc. B Biol. Sci. 279, 4661–4667 (2012).

Article 

Google Scholar
 

Martinossi‐Allibert, I., Thilliez, E., Arnqvist, G. & Berger, D. Sexual selection, environmental robustness, and evolutionary demography of maladapted populations: a test using experimental evolution in seed beetles. Evol. Appl. 12, 1371–1384 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Baur, J., Jagusch, D., Michalak, P., Koppik, M. & Berger, D. The mating system affects the temperature sensitivity of male and female fertility. Funct. Ecol. 36, 92–106 (2022).

Article 
CAS 

Google Scholar
 

Baur, J., Zwoinska, M., Koppik, M., Snook, R. R. & Berger, D. Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evol. Lett. 8, qrad007 (2023).

Berger, D. & Liljestrand-Rönn, J. Environmental complexity mitigates the demographic impact of sexual selection. Ecol. Lett. 27, e14355 (2024).

Article 
PubMed 

Google Scholar
 

Martin. Goal 2: Zero Hunger. United Nations Sustainable Development https://www.un.org/sustainabledevelopment/hunger/ (2022).

Climate Change 2022. Impacts, Adaptation and Vulnerability. https://www.ipcc.ch/report/ar6/wg2/ (2022).

Cabral, J. S. et al. The road to integrate climate change effects on land-use change in regional biodiversity models. British Ecol. Soc. https://doi.org/10.22541/au.164608831.19029067/v1 (2022).

Bocedi, G. et al. RangeShifter 2.0: an extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44, 1453–1462 (2021).

Article 
ADS 
MATH 

Google Scholar
 

Hagen, O. et al. gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biol. 19, e3001340 (2021).

Article 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Dormann, C. F. et al. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39, 2119–2131 (2012).

Article 
MATH 

Google Scholar
 

Mouquet, N. et al. REVIEW: Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310 (2015).

Article 
MATH 

Google Scholar
 

Zurell, D. et al. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol. 22, 2651–2664 (2016).

Article 
ADS 
MATH 

Google Scholar
 

Anderson, R., Bayer, P. E. & Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 56, 197–202 (2020).

Article 
PubMed 
MATH 

Google Scholar
 

Garcia-Costoya, G., Williams, C. E., Faske, T. M., Moorman, J. D. & Logan, M. L. Evolutionary constraints mediate extinction risk under climate change. Ecol. Lett. 26, 529–539 (2023).

Article 
PubMed 

Google Scholar
 

Beck, C. W. A Handbook on Bean Beetles, Callosobruchus maculatus. https://www.beanbeetle.org/new_website/wp-content/images/handbook.pdf (2014).

Berger, D. et al. Interalocus sexual conflict and environmental stress: sex, genes, and concflict in stressful environmentes. Evolution 68, 2184–96 (2014)

Babraham Bioinformatics. FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2024).

Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinforma. Oxf. Engl. 32, 3047–3048 (2016).

Article 
CAS 

Google Scholar
 

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arnqvist, G. et al. A chromosome-level assembly of the seed beetle Callosobruchus maculatus genome with annotation of its repetitive elements. G3 GenesGenomesGenetics 14, jkad266 (2023)

Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Anders, S., Pyl, P. T. & Huber, W. HTSeq–a python framework to work with high-throughput sequencing data. Bioinforma. Oxf. Engl. 31, 166–169 (2015).

Article 
CAS 
MATH 

Google Scholar
 

R Core Team. R: A Language and Environment for Statistical Computing. https://people.math.ethz.ch (2020).

Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

Article 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinforma. Oxf. Engl. 23, 257–258 (2007).

Article 
CAS 
MATH 

Google Scholar
 

Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Bates, D. Mixed Models in R Using the lme4 Package Part 4: Inference Based on Profiled Deviance. https://people.math.ethz.ch (2023).

Immonen, E., Rönn, J., Watson, C., Berger, D. & Arnqvist, G. Complex mitonuclear interactions and metabolic costs of mating in male seed beetles. J. Evol. Biol. 29, 360–370 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Arnqvist, G., Rönn, J., Watson, C., Goenaga, J. & Immonen, E. Concerted evolution of metabolic rate, economics of mating, ecology, and pace of life across seed beetles. Proc. Natl. Acad. Sci. USA 119, e2205564119 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jackai, L. E. N. & Daoust, R. A. Insect pests of cowpeas. Annu. Rev. Entomol. 31, 95–119 (1986).

Article 
MATH 

Google Scholar
 

Wickham, H. Ggplot2: Elegant Graphics for Data Analysis 1st ed. 2009. Corr. 3rd printing 2010 edition (Springer-Verlag New York, 2016).

Arnold, J. B. et al. ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’ https://orcid.org/0000-0001-9953-3904 (2024).