Change, C. & SYR Synthesis Report–URL: https://www.ipcc.ch/report/ar6/syr/downloads/report. IPCC, AR6 Longer Report. (2023).

Laborde, D., Mamun, A., Martin, W., Piñeiro, V. & Vos, R. Agricultural subsidies and global greenhouse gas emissions. Nat. Commun. 12, 2601 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Snyder, C. S., Bruulsema, T. W., Jensen, T. L. & Fixen, P. E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 133, 247–266 (2009).

Article 
CAS 

Google Scholar
 

Farooqi, Z. U. R. et al. Greenhouse gas emissions, carbon stocks and wheat productivity following biochar, compost and vermicompost amendments: comparison of non-saline and salt-affected soils. Sci. Rep. 14, 7752 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Berhanu, Y. et al. Nitrous oxide and methane emissions from coffee agroforestry systems with different intensities of canopy closure. Sci. Total Environ. 876, 162821 (2023).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Huang, T. et al. Effect on greenhouse gas emissions (CH4 and N2O) of straw mulching or its incorporation in farmland ecosystems in China. Sustain. Prod. Consum. 46, 223–232 (2024).

Article 

Google Scholar
 

Cherian, S., Ryu, S. B. & Cornish, K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant. Biotechnol. J. 17, 2041–2061 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Warren-Thomas, E. M. et al. Protecting tropical forests from the rapid expansion of rubber using carbon payments. Nat. Commun. 9, 911 (2018).

Article 
ADS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Lam, S. K. et al. Mitigating soil greenhouse-gas emissions from land‐use change in tropical peatlands. Front. Ecol. Environ. 20, 352–360 (2022).

Article 
CAS 
MATH 

Google Scholar
 

Lang, R. et al. Mechanism of methane uptake in profiles of tropical soils converted from forest to rubber plantations. Soil. Biol. Biochem. 145, 107796 (2020).

Article 
CAS 
MATH 

Google Scholar
 

Hassler, E. et al. Soil fertility controls soil-atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations. Biogeosciences 12, 5831–5852 (2015).

Article 
ADS 
MATH 

Google Scholar
 

Umami, I. M., Kamarudin, K. N. & ABE, S. S. Does soil fertility decline under smallholder rubber farming? The case of a west sumatran lowland in Indonesia. Jpn Agric. Res. Q. 53, 279–287 (2019).

Article 
CAS 

Google Scholar
 

Vrignon-Brenas, S. et al. Nutrient management of immature rubber plantations. A review. Agron. Sustain. Dev. 39, 1–21 (2019).

Article 

Google Scholar
 

Lin, S., Wu, R., Yang, F., Wang, J. & Wu, W. Spatial trade-offs and synergies among ecosystem services within a global biodiversity hotspot. Ecol. Indic. 84, 371–381 (2018).

Article 
MATH 

Google Scholar
 

Schroth, G., Läderach, P., Cuero, B., Neilson, D. S., Bunn, C. & J. & Winner or loser of climate change? A modeling study of current and future climatic suitability of Arabica coffee in Indonesia. Reg. Environ. Change. 15, 1473–1482 (2015).

Article 

Google Scholar
 

Jessy, M., Shankar Meti, S. M. & Nair, N. A cropping system for reduction of gestation period and enhanced yield of rubber trees (Hevea brasiliensis). Rubber Sci. 26, 210–216 (2013).


Google Scholar
 

van Noordwijk, M., Tata, H. L., Xu, J., Dewi, S. & Minang, P. A. Segregate or integrate for multifunctionality and sustained change through rubber-based agroforestry in Indonesia and China. Agroforestry-the Future Global land. use. 9, 69–104 (2012).

Article 

Google Scholar
 

The food and agriculture organization corporate statistical database. (2022). https://www.fao.org/faostat/en/#data, (accessed on 30 April 2024).

Qi, D. et al. Integrative cultivation pattern, distribution, yield and potential benefit of rubber based agroforestry system in China. Ind. Crop Prod. 220, 119228 (2024).

Article 
CAS 
MATH 

Google Scholar
 

Xu, W. et al. Rubber-based agroforestry ecosystems enhance soil enzyme activity but exacerbate microbial nutrient limitations. Forests 15, 1827 (2024).

Article 
MATH 

Google Scholar
 

Zhou, L. et al. in Proceedings of CRRI and IRRDB International Rubber Conference. Siem Reap. Cambodia. 29–34 (2016).

Rodrigo, V., Silva, T. & Munasinghe, E. Improving the spatial arrangement of planting rubber (Hevea brasiliensis Muell. Arg.) For long-term intercropping. Field Crops Res. 89, 327–335 (2004).

Article 

Google Scholar
 

Tetteh, E. N. et al. Plantain-tree rubber intercropping systems improved productivity in the tropical humid zone of Ghana, West Africa. Int. J. Agron. 3240686 (2021). (2021).

Panklang, P. et al. Rubber, rubber and rubber: how 75 years of successive rubber plantation rotations affect topsoil quality? Land. Degrad. Dev. 33, 1159–1169 (2022).

Article 
MATH 

Google Scholar
 

Li, X. A. et al. Enhancement of soil carbon and nitrogen stocks by abiotic and microbial pathways in three rubber-based agroforestry systems in Southwest China. Land. Degrad. Dev. 31, 2507–2515 (2020).

Article 
MATH 

Google Scholar
 

Jong, Y. W. et al. Expected carbon emissions from a rubber plantation in Central Africa. Ecol. Manag. 480, 118668 (2021).

Article 

Google Scholar
 

Yang, S. et al. Patterns and drivers of greenhouse gas emissions in a tropical rubber plantation from Hainan, Danzhou. Atmosphere 15, 1245 (2024).

Article 
MATH 

Google Scholar
 

Toriyama, J. et al. Effects of forest conversion to rubber plantation and of replanting rubber trees on soil organic carbon pools in a tropical moist climate zone. Agric. Ecosyst. Environ. 323, 107699 (2022).

Article 
CAS 
MATH 

Google Scholar
 

Petsri, S., Chidthaisong, A., Pumijumnong, N. & Wachrinrat, C. Greenhouse gas emissions and carbon stock changes in rubber tree plantations in Thailand from 1990 to 2004. J. Clean. Prod. 52, 61–70 (2013).

Article 
CAS 

Google Scholar
 

Zhou, W. et al. Drivers of difference in CO2 and CH4 emissions between rubber plantation and tropical rainforest soils. Agric. Meteorol. 304, 108391 (2021).

Article 
MATH 

Google Scholar
 

Zhou, W. J. et al. The effects of nitrogen fertilization on N2O emissions from a rubber plantation. Sci. Rep. 6, 28230 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ishizuka, S. et al. Effects of conversion from leguminous acacia to non-leguminous eucalyptus on soil N2O emissions in tropical monoculture plantations. Ecol. Manag. 481, 118702 (2021).

Article 
MATH 

Google Scholar
 

Kim, D. G., Kirschbaum, M. U. & Beedy, T. L. Carbon sequestration and net emissions of CH4 and N2O under agroforestry: synthesizing available data and suggestions for future studies. Agric. Ecosyst. Environ. 226, 65–78 (2016).

Article 
CAS 

Google Scholar
 

Ajit et al. Quantification of carbon stocks and sequestration potential through existing agroforestry systems in the hilly Kupwara district of Kashmir valley in India. Curr. Sci. 782–785 (2017). (2017).

Veres, Z. et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Appl. Soil. Ecol. 92, 18–23 (2015).

Article 
MATH 

Google Scholar
 

Luo, L., Meng, H. & Gu, J. D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J. Environ. Manage. 197, 539–549 (2017).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Hauggaard-Nielsen, H. & Jensen, E. S. Facilitative root interactions in intercrops. Root physiology: From gene to function, 237–250 (2005). (2005).

Shah, A. et al. Impact of soil moisture regimes on greenhouse gas emissions, soil microbial biomass, and enzymatic activity in long-term fertilized paddy soil. Environ. Sci. Eur. 36, 120 (2024).

Article 
CAS 
MATH 

Google Scholar
 

Qi, D. et al. Can intercropping with native trees enhance structural stability in young rubber (Hevea brasiliensis) agroforestry system? Eur. J. Agron. 130, 126353 (2021).

Article 
MATH 

Google Scholar
 

Xian, Y. et al. Determining suitable sampling Times for Soil CO2 and N2O emissions helps to accurately evaluate the ability of Rubber-based Agroforestry systems to cope with climate stress. Forests 15, 950 (2024).

Article 
MATH 

Google Scholar
 

Huang, J. et al. An improved double-row rubber (Hevea brasiliensis) plantation system increases land use efficiency by allowing intercropping with yam bean, common bean, soybean, peanut, and coffee: a 17-year case study on Hainan Island, China. J. Clean. Prod. 263, 121493 (2020).

Article 

Google Scholar
 

Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. Methods soil. Analysis: Part. 2 Chem. Microbiol. Prop. 9, 539–579 (1982).

Article 
MATH 

Google Scholar
 

Lu, R. Analytical methods of soil agrochemistry. China Agricultural Sci. Technol. Press. Beijing, 85–96 (1999).

Wu, L. et al. Nitrous oxide emissions in response to straw incorporation is regulated by historical fertilization. Environ. Pollut. 266, 115292 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

DeForest, J. L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil. Biol. Biochem. 41, 1180–1186 (2009).

Article 
CAS 
MATH 

Google Scholar
 

Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker T.F et al.). Cambridge, England and New York, NY: Cambridge University Press (2013).


Google Scholar
 

Sokol, N. W., Kuebbing, S. E., Karlsen-Ayala, E. & Bradford, M. A. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New. Phytol. 221, 233–246 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Saikia, R., Sharma, S., Thind, H. & Sidhu, H. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. Ecol. Indic. 103, 383–394 (2019).

Article 
CAS 

Google Scholar
 

Buyer, J. S., Baligar, V. C. & He, Z. Arévalo-Gardini, E. Soil microbial communities under cacao agroforestry and cover crop systems in Peru. Appl. Soil. Ecol. 120, 273–280 (2017).

Article 

Google Scholar
 

Maurya, B., Dhyani, V. S. P. & Kashyap, S. Impact of altitudes on soil characteristics and enzymatic activities in forest and fallow lands of Almora district of central Himalaya. Octa J. Environ. Res. 2, 1–9 (2014).

Yu, P., Liu, S., Han, K., Guan, S. & Zhou, D. Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China. Agric. Ecosyst. Environ. 245, 83–91 (2017).

Article 
CAS 

Google Scholar
 

Mortimer, R., Saj, S. & David, C. Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor. Syst. 92, 1639–1657 (2018).

Article 

Google Scholar
 

Tang, X. et al. Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis. Plant. Soil. 460, 89–104 (2021).

Article 
CAS 
MATH 

Google Scholar
 

Mudare, S. et al. Yield and fertilizer benefits of maize/grain legume intercropping in China and Africa: a meta-analysis. Agron. Sustain. Dev. 42, 81 (2022).

Article 
CAS 

Google Scholar
 

Cardinael, R., Mao, Z., Chenu, C. & Hinsinger, P. Belowground functioning of agroforestry systems: recent advances and perspectives. Plant. Soil. 453, 1–13 (2020).

Article 
CAS 

Google Scholar
 

Kemmitt, S. J., Wright, D., Goulding, K. W. & Jones, D. L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil. Biol. Biochem. 38, 898–911 (2006).

Article 
CAS 

Google Scholar
 

Clivot, H. et al. Early effects of temperate agroforestry practices on soil organic matter and microbial enzyme activity. Plant. Soil. 453, 189–207 (2020).

Article 
CAS 

Google Scholar
 

Ma, Y. H., Fu, S. L., Zhang, X. P., Zhao, K. & Chen, H. Y. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Appl. Soil. Ecol. 119, 171–178 (2017).

Article 

Google Scholar
 

Bresciani, L., Freitas, C. C. G., do Rêgo Barros, F. M., Andreote, F. D. & Dini-Andreote, F. Partitioning the effects of coffee-Urochloa intercropping on soil microbial properties at a centimeter-scale. Appl. Soil. Ecol. 195, 105264 (2024).

Article 

Google Scholar
 

Adetunji, A. T., Lewu, F. B., Mulidzi, R. & Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review. J. Soil. Sci. Plant. Nutr. 17, 794–807 (2017).

Article 
CAS 

Google Scholar
 

Jian, S. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil. Biol. Biochem. 101, 32–43 (2016).

Article 
CAS 
MATH 

Google Scholar
 

Feng, C. et al. Soil enzyme activities increase following restoration of degraded subtropical forests. Geoderma 351, 180–187 (2019).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Lemanowicz, J. et al. The effect of enzyme activity on carbon sequestration and the cycle of available macro-(P, K, mg) and microelements (Zn, Cu) in Phaeozems. Agric 13, 172 (2023).

CAS 

Google Scholar
 

Li, G. et al. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: a global meta-analysis. Agric. Ecosyst. Environ. 342, 108231 (2023).

Article 
CAS 
MATH 

Google Scholar
 

Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil. Biol. Biochem. 38, 425–448 (2006).

Article 
CAS 

Google Scholar
 

Janssens, I. A. et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol. 7, 269–278 (2001).

Article 
ADS 
MATH 

Google Scholar
 

Kan, Z. R. et al. Soil organic carbon regulates CH4 production through methanogenic evenness and available phosphorus under different straw managements. J. Environ. Manage. 328, 116990 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Peichl, M., Arain, M. A., Ullah, S. & Moore, T. R. Carbon dioxide, methane, and nitrous oxide exchanges in an age-sequence of temperate pine forests. Glob Change Biol. 16, 2198–2212 (2010).

Article 
ADS 

Google Scholar
 

Mangalassery, S., Sjögersten, S., Sparkes, D., Sturrock, C. & Mooney, S. The effect of soil aggregate size on pore structure and its consequence on emission of greenhouse gases. Soil. Till Res. 132, 39–46 (2013).

Article 

Google Scholar
 

Zhang, M. et al. Intercropping with BNI-sorghum benefits neighbouring maize productivity and mitigates soil nitrification and N2O emission. Agric. Ecosyst. Environ. 352, 108510 (2023).

Article 
CAS 

Google Scholar
 

Kong, D. et al. Low N2O emissions from wheat in a wheat-rice double cropping system due to manure substitution are associated with changes in the abundance of functional microbes. Agric. Ecosyst. Environ. 311, 107318 (2021).

Article 
CAS 
MATH 

Google Scholar
 

Li, X. F. et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 4, 943–950 (2021).

Article 
MATH 

Google Scholar
 

Wang, Y. et al. Soil pH as the chief modifier for regional nitrous oxide emissions: new evidence and implications for global estimates and mitigation. Glob Change Biol. 24, e617–e626 (2018).

Article 
MATH 

Google Scholar
 

Shaaban, M. et al. Mitigation of N2O emissions from urine treated acidic soils by liming. Environ. Pollut. 255, 113237 (2019).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Lv, J. et al. Mitigation of reactive nitrogen loss from arable soils through microbial inoculant application: a meta-analysis. Soil. Till Res. 235, 105883 (2024).

Article 
MATH 

Google Scholar