Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wang, Y., Lin, C.-Y., Nikolaenko, A., Raghunathan, V. & Potma, E. O. Four-wave mixing microscopy of nanostructures. Adv. Opt. Photon. 3, 1–52 (2011).

Article 

Google Scholar
 

Chapple, P., Staromlynska, J., Hermann, J., Mckay, T. & McDuff, R. Single-beam Z-scan: measurement techniques and analysis. J. Nonlinear Optic. Phys. Mat. 6, 251–293 (1997).

Article 
ADS 
MATH 

Google Scholar
 

Zhang, H. et al. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37, 1856–1858 (2012).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Ji, W., Chen, W., Lim, S., Lin, J. & Guo, Z. Gravitation-dependent, thermally-induced self-diffraction in carbon nanotube solutions. Opt. Express 14, 8958–8966 (2006).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Wu, R. et al. Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano Lett. 11, 5159–5164 (2011).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Sheik-Bahae, M., Said, A. A., Wei, T.-H., Hagan, D. J. & Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Yin, M., Li, H., Tang, S. & Ji, W. Determination of nonlinear absorption and refraction by single Z-scan method. Appl. Phys. B 70, 587–591 (2000).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Golestanifar, M., Haddad, M. A., Hassan, A. N. & Ostovari, F. Intensity-dependent thermally induced nonlinear optical response of graphene oxide derivative in hydraulic oil. Int. J. Opt. Photon. 17, 3–14 (2023).

Article 

Google Scholar
 

Owji, E., Ostovari, F., Haddad, M. A., Golestanifar, M. & Keshavarz, A. Investigation of thermally induced nonlinear optical response of polyurethane-graphene composite by SSPM method. Opt. Mater. 157, 116044 (2024).

Article 
CAS 
MATH 

Google Scholar
 

Ribeiro, M., Turchiello, R. & Gómez, S. Employment of laser beam self-phase modulation for detecting adulterations in light-absorbing commercial fluids. Food Anal. Methods 12, 908–913 (2019).

Article 
MATH 

Google Scholar
 

Callen, W., Huth, B. & Pantell, R. Optical patterns of thermally self-defocused light. Appl. Phys. Lett. 11, 103–105 (1967).

Article 
ADS 

Google Scholar
 

Stolen, R. & Bjorkholm, J. Parametric amplification and frequency conversion in optical fibers. IEEE J. Quantum Electron. 18, 1062–1072 (1982).

Article 
ADS 
MATH 

Google Scholar
 

Durbin, S., Arakelian, S. & Shen, Y. Laser-induced diffraction rings from a nematic-liquid-crystal film. Opt. Lett. 6, 411–413 (1981).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Hassan, A. N., Haddad, M. A., Golestanifar, M. & Behjat, A. Non-linear optical response as a food authentication: investigation of non-linear optical properties of edible oils by spatial self-phase modulation (SSPM) method. Food Anal. Methods 16, 1392–1402 (2023).

Article 

Google Scholar
 

Pan, Y., Lyu, Z. & Wang, C. All-optical switching in azo dye doped liquid crystals based on spatial cross-phase modulation. OSA Continuum 4, 2714–2720 (2021).

Article 
CAS 
MATH 

Google Scholar
 

Wu, Y. et al. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation. Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Hassan, A. N., Haddad, M. A., Behjat, A. & Golestanifar, M. Optical nonlinearity and all-optical switching in pumpkin seed oil based on the spatial cross-phase modulation (SXPM) technique. Sci. Rep. 14, 18158 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hassan, A. N., Haddad, M. A., Golestanifar, M. & Behjat, A. Investigating the nonlinear optical response of virgin cherry kernel oil and its application to detecting adulteration. Phys. Scr. 99, 075507 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Castro, L. V. & Vazquez, F. Fractionation and characterization of Mexican crude oils. Energy Fuels 23, 1603–1609 (2009).

Article 
CAS 
MATH 

Google Scholar
 

Asemani, M. & Rabbani, A. R. Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: Curve resolve of overlapping bands. J. Petrol. Sci. Eng. 185, 106618 (2020).

Article 
CAS 
MATH 

Google Scholar
 

Mahmood, A. I., Fandi, S. K. & Naser, H. A. Comparative study of the linear and nonlinear optical properties for different Iraqi heavy and light crude oils. Iraqi J. Phys. 18, 11–20 (2020).

Article 
MATH 

Google Scholar
 

Bol’shakov, A. A., Pandey, S. J., Mao, X. & Liu, C. Analysis of liquid petroleum using a laser-induced breakdown spectroscopy instrument. Spectrochim. Acta, Part B 179, 106094 (2021).

Article 

Google Scholar
 

El-Hussein, A., Marzouk, A. & Harith, M. Discriminating crude oil grades using laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B 113, 93–99 (2015).

Article 
CAS 

Google Scholar
 

Izan, R., Haddad, M. A. & Borhani Zarandi, M. Elemental analysis of asphaltene precipitation in southwestern oil wells of Iran using the laser-induced breakdown spectroscopy. J. Petroleum Res. 34, 140–149 (2024).

CAS 

Google Scholar
 

Zhou, W. et al. Optical properties of crude oil with different temperatures. Optik 196, 162946 (2019).

Article 
CAS 

Google Scholar
 

Ooms, M. D., Fadaei, H. & Sinton, D. Surface plasmon resonance for crude oil characterization. Energy Fuels 29, 3019–3023 (2015).

Article 
CAS 
MATH 

Google Scholar
 

Cruz, E. E. B., Rivas, N. V. G., García, U. P., Martinez, A. M. M. & Banda, J. A. M. Characterization of crude oils and the precipitated asphaltenes fraction using UV spectroscopy, dynamic light scattering and microscopy in Recent Insights in Petroleum Science and Engineering (ed. Mansoor Zoveidavianpoor) 117–135 (IntechOpen, 2018).

Sokolov, A. et al. Magneto-optical activity of crude oil and its heavy fractions. Opt. Spectrosc. 112, 755–762 (2012).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Chirita, A., Kukhtarev, N., Kukhtareva, T. & Gallegos, S. Remote sensing and characterization of oil on water using coherent fringe projection and holographic in-line interferometry. Opt. Eng. 52, 035601–035601 (2013).

Article 
ADS 

Google Scholar
 

Rad, A. G. Single beam Z-scan measurement of nonlinear refractive index of crude oils. J. Modern Phys. 5, 44386 (2014).

Article 
MATH 

Google Scholar
 

Wang, Y. et al. Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials. Nanoscale 9, 3547–3554 (2017).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Karimzadeh, R. Spatial self-phase modulation of a laser beam propagating through liquids with self-induced natural convection flow. J. Opt. 14, 095701 (2012).

Article 
ADS 
MATH 

Google Scholar
 

Karimzadeh, R. Studies of spatial self-phase modulation of the laser beam passing through the liquids. Opt. Commun. 286, 329–333 (2013).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Liao, Y., Song, C., Xiang, Y. & Dai, X. Recent advances in spatial self-phase modulation with 2D materials and its applications. Ann. der Physik 532, 2000322 (2020).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Gordon, J., Leite, R., Moore, R., Porto, S. & Whinnery, J. Long-transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36, 3–8 (1965).

Article 
ADS 

Google Scholar
 

Jalali, A. A., Rybarsyk, J. & Rogers, E. Thermal lensing analysis of TGG and its effect on beam quality. Opt. Express 21, 13741–13747 (2013).

Article 
ADS 
PubMed 
MATH 

Google Scholar
 

Pu, S. et al. Suppressing the thermal lens effect by magnetic-field-induced mass transfer and phase separation in a magnetic fluid. Appl. Phys. Letters 87, 021905 (2005).

Article 
ADS 

Google Scholar
 

Whinnery, J. R. Laser measurement of optical absorption in liquids. Acc. Chem. Res. 7, 225–231 (1974).

Article 
CAS 
MATH 

Google Scholar
 

Li, C. Nonlinear optics: principles and applications (ed. Chunfei Li) (Springer, 2017).

Bautista, J. E. et al. Intensity-dependent thermally induced nonlinear optical response of two-dimensional layered transition-metal dichalcogenides in suspension. ACS Photon. 10, 484–492 (2023).

Article 
CAS 
MATH 

Google Scholar
 

Dengler, S., Azarian, A. & Eberle, B. New insights into nonlinear optical effects in fullerene solutions—A detailed analysis of self-diffraction of continuous wave laser radiation. Mat. Res. Express 8, 085702 (2021).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Ghosh, G. Handbook of optical constants of solids. In Handbook of thermo-optic coefficients of optical materials with applications (ed. Palik, E. D.) (Academic Press, 1998).

MATH 

Google Scholar
 

Shen, J., Lowe, R. D. & Snook, R. D. A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem. Phys. 165, 385–396 (1992).

Article 
CAS 
MATH 

Google Scholar
 

Zidan, M., Al-Ktaifani, M., El-Daher, M., Allahham, A. & Ghanem, A. Diffraction ring patterns and nonlinear measurements of the Tris (2′, 2-bipyridyl) iron (II) tetrafluoroborate. Opt. laser Technol. 131, 106449 (2020).

Article 
CAS 

Google Scholar
 

Ogusu, K., Kohtani, Y. & Shao, H. Laser-Induced Diffraction Rings from an Absorbing Solution. Opt. Rev. 3, 232–234 (1996).

Article 
CAS 
MATH 

Google Scholar
 

Jia, Y. et al. Nonlinear optical response, all optical switching, and all optical information conversion in NbSe 2 nanosheets based on spatial self-phase modulation. Nanoscale 11, 4515–4522 (2019).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Sudha, N., Surendran, R. & Jeyaram, S. Synthesis, spectral, solvent dependent linear and nonlinear optical characteristics of (E)-N-(3-(3-(4(dimethylamino)phenyl)acryloyl) phenyl)quinolone-2-carboxamide. J. Fluoresc. 32, 1471–1480 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Sudha, N., Surendran, R. & Jeyaram, S. Low power Z–scan studies of Schiff base (E)-N’-(4-(dimethylamino) benzylidene) isonicotinohydrazide for nonlinear optical applications. Indian J. Phys. 97, 4399–4408 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Sudha, N., Surendran, R. & Jeyaram, S. Vibrational spectroscopic, structural, linear and third-order nonlinear optical properties of isoniazid-vanillin hybrid. Indian J. Phys. 98, 1453–1462 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Boyd, R. W. The intensity-dependent refractive index. In Nonlinear optics 4th edn (ed. Boyd, R. W.) 203–248 (Academic Press, 2020).

Chapter 
MATH 

Google Scholar
 

Nayak, S. K. et al. Harnessing coherent light−matter interactions for all-optical switching and logic gate applications with macrocyclic phthalocyanines. ACS Appl. Opt. Mat. 2, 453–465 (2024).

Article 
CAS 

Google Scholar
 

Wu, L. et al. MXene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photon. Rev. 12, 1800215 (2018).

Article 
ADS 

Google Scholar
 

Marbello, O., Valbuena, S. & Racedo, F. J. Non-linear optical response of edible oils by means of the Z-scan technique. J. Phys.: Conf. Ser. 1219, 012008 (2019).

CAS 

Google Scholar