Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).
Wang, Y., Lin, C.-Y., Nikolaenko, A., Raghunathan, V. & Potma, E. O. Four-wave mixing microscopy of nanostructures. Adv. Opt. Photon. 3, 1–52 (2011).
Chapple, P., Staromlynska, J., Hermann, J., Mckay, T. & McDuff, R. Single-beam Z-scan: measurement techniques and analysis. J. Nonlinear Optic. Phys. Mat. 6, 251–293 (1997).
Zhang, H. et al. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37, 1856–1858 (2012).
Ji, W., Chen, W., Lim, S., Lin, J. & Guo, Z. Gravitation-dependent, thermally-induced self-diffraction in carbon nanotube solutions. Opt. Express 14, 8958–8966 (2006).
Wu, R. et al. Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano Lett. 11, 5159–5164 (2011).
Sheik-Bahae, M., Said, A. A., Wei, T.-H., Hagan, D. J. & Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).
Yin, M., Li, H., Tang, S. & Ji, W. Determination of nonlinear absorption and refraction by single Z-scan method. Appl. Phys. B 70, 587–591 (2000).
Golestanifar, M., Haddad, M. A., Hassan, A. N. & Ostovari, F. Intensity-dependent thermally induced nonlinear optical response of graphene oxide derivative in hydraulic oil. Int. J. Opt. Photon. 17, 3–14 (2023).
Owji, E., Ostovari, F., Haddad, M. A., Golestanifar, M. & Keshavarz, A. Investigation of thermally induced nonlinear optical response of polyurethane-graphene composite by SSPM method. Opt. Mater. 157, 116044 (2024).
Ribeiro, M., Turchiello, R. & Gómez, S. Employment of laser beam self-phase modulation for detecting adulterations in light-absorbing commercial fluids. Food Anal. Methods 12, 908–913 (2019).
Callen, W., Huth, B. & Pantell, R. Optical patterns of thermally self-defocused light. Appl. Phys. Lett. 11, 103–105 (1967).
Stolen, R. & Bjorkholm, J. Parametric amplification and frequency conversion in optical fibers. IEEE J. Quantum Electron. 18, 1062–1072 (1982).
Durbin, S., Arakelian, S. & Shen, Y. Laser-induced diffraction rings from a nematic-liquid-crystal film. Opt. Lett. 6, 411–413 (1981).
Hassan, A. N., Haddad, M. A., Golestanifar, M. & Behjat, A. Non-linear optical response as a food authentication: investigation of non-linear optical properties of edible oils by spatial self-phase modulation (SSPM) method. Food Anal. Methods 16, 1392–1402 (2023).
Pan, Y., Lyu, Z. & Wang, C. All-optical switching in azo dye doped liquid crystals based on spatial cross-phase modulation. OSA Continuum 4, 2714–2720 (2021).
Wu, Y. et al. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation. Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
Hassan, A. N., Haddad, M. A., Behjat, A. & Golestanifar, M. Optical nonlinearity and all-optical switching in pumpkin seed oil based on the spatial cross-phase modulation (SXPM) technique. Sci. Rep. 14, 18158 (2024).
Hassan, A. N., Haddad, M. A., Golestanifar, M. & Behjat, A. Investigating the nonlinear optical response of virgin cherry kernel oil and its application to detecting adulteration. Phys. Scr. 99, 075507 (2024).
Castro, L. V. & Vazquez, F. Fractionation and characterization of Mexican crude oils. Energy Fuels 23, 1603–1609 (2009).
Asemani, M. & Rabbani, A. R. Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: Curve resolve of overlapping bands. J. Petrol. Sci. Eng. 185, 106618 (2020).
Mahmood, A. I., Fandi, S. K. & Naser, H. A. Comparative study of the linear and nonlinear optical properties for different Iraqi heavy and light crude oils. Iraqi J. Phys. 18, 11–20 (2020).
Bol’shakov, A. A., Pandey, S. J., Mao, X. & Liu, C. Analysis of liquid petroleum using a laser-induced breakdown spectroscopy instrument. Spectrochim. Acta, Part B 179, 106094 (2021).
El-Hussein, A., Marzouk, A. & Harith, M. Discriminating crude oil grades using laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B 113, 93–99 (2015).
Izan, R., Haddad, M. A. & Borhani Zarandi, M. Elemental analysis of asphaltene precipitation in southwestern oil wells of Iran using the laser-induced breakdown spectroscopy. J. Petroleum Res. 34, 140–149 (2024).
Zhou, W. et al. Optical properties of crude oil with different temperatures. Optik 196, 162946 (2019).
Ooms, M. D., Fadaei, H. & Sinton, D. Surface plasmon resonance for crude oil characterization. Energy Fuels 29, 3019–3023 (2015).
Cruz, E. E. B., Rivas, N. V. G., García, U. P., Martinez, A. M. M. & Banda, J. A. M. Characterization of crude oils and the precipitated asphaltenes fraction using UV spectroscopy, dynamic light scattering and microscopy in Recent Insights in Petroleum Science and Engineering (ed. Mansoor Zoveidavianpoor) 117–135 (IntechOpen, 2018).
Sokolov, A. et al. Magneto-optical activity of crude oil and its heavy fractions. Opt. Spectrosc. 112, 755–762 (2012).
Chirita, A., Kukhtarev, N., Kukhtareva, T. & Gallegos, S. Remote sensing and characterization of oil on water using coherent fringe projection and holographic in-line interferometry. Opt. Eng. 52, 035601–035601 (2013).
Rad, A. G. Single beam Z-scan measurement of nonlinear refractive index of crude oils. J. Modern Phys. 5, 44386 (2014).
Wang, Y. et al. Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials. Nanoscale 9, 3547–3554 (2017).
Karimzadeh, R. Spatial self-phase modulation of a laser beam propagating through liquids with self-induced natural convection flow. J. Opt. 14, 095701 (2012).
Karimzadeh, R. Studies of spatial self-phase modulation of the laser beam passing through the liquids. Opt. Commun. 286, 329–333 (2013).
Liao, Y., Song, C., Xiang, Y. & Dai, X. Recent advances in spatial self-phase modulation with 2D materials and its applications. Ann. der Physik 532, 2000322 (2020).
Gordon, J., Leite, R., Moore, R., Porto, S. & Whinnery, J. Long-transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36, 3–8 (1965).
Jalali, A. A., Rybarsyk, J. & Rogers, E. Thermal lensing analysis of TGG and its effect on beam quality. Opt. Express 21, 13741–13747 (2013).
Pu, S. et al. Suppressing the thermal lens effect by magnetic-field-induced mass transfer and phase separation in a magnetic fluid. Appl. Phys. Letters 87, 021905 (2005).
Whinnery, J. R. Laser measurement of optical absorption in liquids. Acc. Chem. Res. 7, 225–231 (1974).
Li, C. Nonlinear optics: principles and applications (ed. Chunfei Li) (Springer, 2017).
Bautista, J. E. et al. Intensity-dependent thermally induced nonlinear optical response of two-dimensional layered transition-metal dichalcogenides in suspension. ACS Photon. 10, 484–492 (2023).
Dengler, S., Azarian, A. & Eberle, B. New insights into nonlinear optical effects in fullerene solutions—A detailed analysis of self-diffraction of continuous wave laser radiation. Mat. Res. Express 8, 085702 (2021).
Ghosh, G. Handbook of optical constants of solids. In Handbook of thermo-optic coefficients of optical materials with applications (ed. Palik, E. D.) (Academic Press, 1998).
Shen, J., Lowe, R. D. & Snook, R. D. A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem. Phys. 165, 385–396 (1992).
Zidan, M., Al-Ktaifani, M., El-Daher, M., Allahham, A. & Ghanem, A. Diffraction ring patterns and nonlinear measurements of the Tris (2′, 2-bipyridyl) iron (II) tetrafluoroborate. Opt. laser Technol. 131, 106449 (2020).
Ogusu, K., Kohtani, Y. & Shao, H. Laser-Induced Diffraction Rings from an Absorbing Solution. Opt. Rev. 3, 232–234 (1996).
Jia, Y. et al. Nonlinear optical response, all optical switching, and all optical information conversion in NbSe 2 nanosheets based on spatial self-phase modulation. Nanoscale 11, 4515–4522 (2019).
Sudha, N., Surendran, R. & Jeyaram, S. Synthesis, spectral, solvent dependent linear and nonlinear optical characteristics of (E)-N-(3-(3-(4(dimethylamino)phenyl)acryloyl) phenyl)quinolone-2-carboxamide. J. Fluoresc. 32, 1471–1480 (2022).
Sudha, N., Surendran, R. & Jeyaram, S. Low power Z–scan studies of Schiff base (E)-N’-(4-(dimethylamino) benzylidene) isonicotinohydrazide for nonlinear optical applications. Indian J. Phys. 97, 4399–4408 (2023).
Sudha, N., Surendran, R. & Jeyaram, S. Vibrational spectroscopic, structural, linear and third-order nonlinear optical properties of isoniazid-vanillin hybrid. Indian J. Phys. 98, 1453–1462 (2024).
Boyd, R. W. The intensity-dependent refractive index. In Nonlinear optics 4th edn (ed. Boyd, R. W.) 203–248 (Academic Press, 2020).
Nayak, S. K. et al. Harnessing coherent light−matter interactions for all-optical switching and logic gate applications with macrocyclic phthalocyanines. ACS Appl. Opt. Mat. 2, 453–465 (2024).
Wu, L. et al. MXene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photon. Rev. 12, 1800215 (2018).
Marbello, O., Valbuena, S. & Racedo, F. J. Non-linear optical response of edible oils by means of the Z-scan technique. J. Phys.: Conf. Ser. 1219, 012008 (2019).