Kerr, R. A. A North Atlantic climate pacemaker for the centuries. Science 288, 1984–1985 (2000).
Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophy. 57, 316–375 (2019).
Bjerknes, J. Atlantic air–sea interaction. Adv. Geophys. 10, 1–82 (1964).
Folland, C. K., Palmer, T. N. & Parker, D. E. Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320, 602–607 (1986).
Knight, J. R., Folland, C. K. & Scaife, A. A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 33, L17706 (2006).
Latif, M., Keenlyside, N. & Bader, J. Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett. 34, L01710 (2007).
Goldenberg, S. B., Landsea, C. W., Mestas‐Nuñez, A. M. & Gray, W. M. The recent increase in Atlantic hurricane activity: causes and implications. Science 293, 474–479 (2001).
Zhang, R. & Delworth, T. L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett. 34, L23708 (2007).
Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 15998 (2017).
Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).
Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1, 360–364 (2011).
Qasmi, S., Sanchez-Gomez, E., Ruprich-Robert, Y., Boé, J. & Cassou, C. Modulation of the occurrence of heatwaves over the Euro-Mediterranean region by the intensity of the Atlantic multidecadal variability. J. Clim. 34, 1099–1114 (2021).
Lee, S. K. & Wang, C. Delayed advective oscillation of the Atlantic thermohaline circulation. J. Clim. 23, 1254–1261 (2010).
Zhang, L. & Wang, C. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 118, 5772–5791 (2013).
Hand, R., Bader, J., Matei, D., Ghosh, R. & Jungclaus, J. H. Changes of decadal SST variations in the subpolar North Atlantic under strong CO2 forcing as an indicator for the ocean circulation’s contribution to Atlantic multidecadal variability. J. Clim. 33, 3213–3228 (2020).
Msadek, R., Frankignoul, C. & Li, L. Z. Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study. Clim. Dynam. 36, 1255–1276 (2011).
Frankignoul, C., Gastineau, G. & Kwon, Y. O. Wintertime atmospheric response to North Atlantic ocean circulation variability in a climate model. J. Clim. 28, 7659–7677 (2015).
Wills, R. C., Armour, K. C., Battisti, D. S. & Hartmann, D. L. Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation. J. Clim. 32, 251–272 (2019).
Delworth, T. L. et al. The central role of ocean dynamics in connecting the North Atlantic oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Clim. 30, 3789–3805 (2017).
He, C. et al. Tropical Atlantic multidecadal variability is dominated by external forcing. Nature 622, 521–527 (2023).
Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).
Vecchi, G. A., Delworth, T. L. & Booth, B. Origins of Atlantic decadal swings. Nature 548, 284–285 (2017).
Zhang, R. et al. Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci. 70, 1135–1144 (2013).
Qin, M., Dai, A. & Hua, W. Influence of anthropogenic warming on the Atlantic multidecadal variability and its impact on global climate in the twenty-first century in the MPI-GE simulations. J. Clim. 35, 2805–2821 (2022).
Wu, S. & Liu, Z. Y. Decadal variability in the North Pacific and North Atlantic under global warming: the weakening response and its mechanism. J. Clim. 33, 9181–9193 (2020).
Taylor, K. E., Ronald, J. S. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Liu, W., Fedorov, A. & Sévellec, F. The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic sea ice decline. J. Clim. 32, 977–996 (2019).
Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).
Yamamoto, A., Tatebe, H. & Nonaka, M. On the emergence of the Atlantic multidecadal SST signal: a key role of the mixed layer depth variability driven by North Atlantic oscillation. J. Clim. 33, 3511–3531 (2020).
Deng, J. & Dai, A. Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region. Nat. Commun. 13, 2100 (2022).
Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703 (2005).
Liu, W., Xie, S. P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci. Adv. 3, e1601666 (2017).
Jahn, A. & Holland, M. M. Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4‐CMIP5 simulations. Geophys. Res. Lett. 40, 1206–1211 (2013).
Bakker, P. et al. Fate of the Atlantic meridional overturning circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12252–12260 (2016).
Mecking, J. V. & Drijfhout, S. S. The decrease in ocean heat transport in response to global warming. Nat. Clim. Change 13, 1229–1236 (2023).
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).
Huang, B. et al. Extended reconstructed sea surface temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
Frankignoul, C., Gastineau, G. & Kwon, Y. O. Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Clim. 30, 9871–9895 (2017).
Ting, M., Kushnir, Y., Seager, R. & Li, C. Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim. 22, 1469–1481 (2009).
Deser, C. & Phillips, A. S. Defining the internal component of Atlantic multidecadal variability in a changing climate. Geophys. Res. Lett. 48, e2021GL095023 (2021).
Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009).
Jackson, L. C. et al. The evolution of the North Atlantic meridional overturning circulation since 1980. Nat. Rev. Earth Environ. 3, 241–254 (2022).
Bartlett, M. S. Some aspects of the time-correlation problem in regard to tests of significance. J. R. Stat. Soc. 98, 536–543 (1935).
Wang, Y. Codes for “Intensified Atlantic multidecadal variability in a warming climate”. Zenodo https://doi.org/10.5281/zenodo.14286522 (2024).