Kerr, R. A. A North Atlantic climate pacemaker for the centuries. Science 288, 1984–1985 (2000).

Article 
CAS 

Google Scholar
 

Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophy. 57, 316–375 (2019).

Article 

Google Scholar
 

Bjerknes, J. Atlantic air–sea interaction. Adv. Geophys. 10, 1–82 (1964).

Article 

Google Scholar
 

Folland, C. K., Palmer, T. N. & Parker, D. E. Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320, 602–607 (1986).

Article 

Google Scholar
 

Knight, J. R., Folland, C. K. & Scaife, A. A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 33, L17706 (2006).

Article 

Google Scholar
 

Latif, M., Keenlyside, N. & Bader, J. Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett. 34, L01710 (2007).

Article 

Google Scholar
 

Goldenberg, S. B., Landsea, C. W., Mestas‐Nuñez, A. M. & Gray, W. M. The recent increase in Atlantic hurricane activity: causes and implications. Science 293, 474–479 (2001).

Article 
CAS 

Google Scholar
 

Zhang, R. & Delworth, T. L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett. 34, L23708 (2007).

Article 

Google Scholar
 

Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 15998 (2017).

Article 
CAS 

Google Scholar
 

Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

Article 
CAS 

Google Scholar
 

Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1, 360–364 (2011).

Article 

Google Scholar
 

Qasmi, S., Sanchez-Gomez, E., Ruprich-Robert, Y., Boé, J. & Cassou, C. Modulation of the occurrence of heatwaves over the Euro-Mediterranean region by the intensity of the Atlantic multidecadal variability. J. Clim. 34, 1099–1114 (2021).

Article 

Google Scholar
 

Lee, S. K. & Wang, C. Delayed advective oscillation of the Atlantic thermohaline circulation. J. Clim. 23, 1254–1261 (2010).

Article 

Google Scholar
 

Zhang, L. & Wang, C. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 118, 5772–5791 (2013).

Article 

Google Scholar
 

Hand, R., Bader, J., Matei, D., Ghosh, R. & Jungclaus, J. H. Changes of decadal SST variations in the subpolar North Atlantic under strong CO2 forcing as an indicator for the ocean circulation’s contribution to Atlantic multidecadal variability. J. Clim. 33, 3213–3228 (2020).

Article 

Google Scholar
 

Msadek, R., Frankignoul, C. & Li, L. Z. Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study. Clim. Dynam. 36, 1255–1276 (2011).

Article 

Google Scholar
 

Frankignoul, C., Gastineau, G. & Kwon, Y. O. Wintertime atmospheric response to North Atlantic ocean circulation variability in a climate model. J. Clim. 28, 7659–7677 (2015).

Article 

Google Scholar
 

Wills, R. C., Armour, K. C., Battisti, D. S. & Hartmann, D. L. Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation. J. Clim. 32, 251–272 (2019).

Article 

Google Scholar
 

Delworth, T. L. et al. The central role of ocean dynamics in connecting the North Atlantic oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Clim. 30, 3789–3805 (2017).

Article 

Google Scholar
 

He, C. et al. Tropical Atlantic multidecadal variability is dominated by external forcing. Nature 622, 521–527 (2023).

Article 
CAS 

Google Scholar
 

Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

Article 
CAS 

Google Scholar
 

Vecchi, G. A., Delworth, T. L. & Booth, B. Origins of Atlantic decadal swings. Nature 548, 284–285 (2017).

Article 
CAS 

Google Scholar
 

Zhang, R. et al. Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci. 70, 1135–1144 (2013).

Article 

Google Scholar
 

Qin, M., Dai, A. & Hua, W. Influence of anthropogenic warming on the Atlantic multidecadal variability and its impact on global climate in the twenty-first century in the MPI-GE simulations. J. Clim. 35, 2805–2821 (2022).

Article 

Google Scholar
 

Wu, S. & Liu, Z. Y. Decadal variability in the North Pacific and North Atlantic under global warming: the weakening response and its mechanism. J. Clim. 33, 9181–9193 (2020).

Article 

Google Scholar
 

Taylor, K. E., Ronald, J. S. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

Article 

Google Scholar
 

Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

Article 

Google Scholar
 

Liu, W., Fedorov, A. & Sévellec, F. The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic sea ice decline. J. Clim. 32, 977–996 (2019).

Article 

Google Scholar
 

Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).

Article 

Google Scholar
 

Yamamoto, A., Tatebe, H. & Nonaka, M. On the emergence of the Atlantic multidecadal SST signal: a key role of the mixed layer depth variability driven by North Atlantic oscillation. J. Clim. 33, 3511–3531 (2020).

Article 

Google Scholar
 

Deng, J. & Dai, A. Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region. Nat. Commun. 13, 2100 (2022).

Article 
CAS 

Google Scholar
 

Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703 (2005).

Article 

Google Scholar
 

Liu, W., Xie, S. P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci. Adv. 3, e1601666 (2017).

Article 

Google Scholar
 

Jahn, A. & Holland, M. M. Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4‐CMIP5 simulations. Geophys. Res. Lett. 40, 1206–1211 (2013).

Article 

Google Scholar
 

Bakker, P. et al. Fate of the Atlantic meridional overturning circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12252–12260 (2016).

Article 

Google Scholar
 

Mecking, J. V. & Drijfhout, S. S. The decrease in ocean heat transport in response to global warming. Nat. Clim. Change 13, 1229–1236 (2023).

Article 

Google Scholar
 

Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).


Google Scholar
 

Huang, B. et al. Extended reconstructed sea surface temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

Article 

Google Scholar
 

Frankignoul, C., Gastineau, G. & Kwon, Y. O. Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Clim. 30, 9871–9895 (2017).

Article 

Google Scholar
 

Ting, M., Kushnir, Y., Seager, R. & Li, C. Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim. 22, 1469–1481 (2009).

Article 

Google Scholar
 

Deser, C. & Phillips, A. S. Defining the internal component of Atlantic multidecadal variability in a changing climate. Geophys. Res. Lett. 48, e2021GL095023 (2021).

Article 

Google Scholar
 

Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009).

Article 

Google Scholar
 

Jackson, L. C. et al. The evolution of the North Atlantic meridional overturning circulation since 1980. Nat. Rev. Earth Environ. 3, 241–254 (2022).

Article 

Google Scholar
 

Bartlett, M. S. Some aspects of the time-correlation problem in regard to tests of significance. J. R. Stat. Soc. 98, 536–543 (1935).

Article 

Google Scholar
 

Wang, Y. Codes for “Intensified Atlantic multidecadal variability in a warming climate”. Zenodo https://doi.org/10.5281/zenodo.14286522 (2024).