Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B: Biol. Sci. 361, 931–950 (2006).

Article 
CAS 
MATH 

Google Scholar
 

Garrels, R. M. & Lerman, A. Phanerozoic cycles of sedimentary carbon and sulfur. Proc. Natl Acad. Sci. 78, 4652–4656 (1981).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

Article 
ADS 
CAS 

Google Scholar
 

Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M. & Wildman, R. A. Jr Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 31, 105–134 (2003).

Article 
ADS 
CAS 

Google Scholar
 

Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Sperling, E. A. et al. A long-term record of early to mid-Paleozoic marine redox change. Sci. Adv. 7, eabf4382 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci. Rev. 110, 26–57 (2012).

Article 
ADS 
CAS 

Google Scholar
 

Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sperling, E. A., Knoll, A. H. & Girguis, P. R. The ecological physiology of Earth’s second oxygen revolution. Annu. Rev. Ecol., Evolution, Syst. 46, 215–235 (2015).

Article 
MATH 

Google Scholar
 

Sahoo, S. K. et al. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14, 457–468 (2016).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 361, 174–177 (2018).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Warke, M. R. et al. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”. Proc. Natl Acad. Sci. 117, 13314–13320 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Crockford, P. W. et al. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559, 613–616 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Thiemens, M. H. History and applications of mass-independent isotope effects. Annu. Rev. Earth Planet. Sci. 34, 217–262 (2006).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Bao, H., Lyons, J. R. & Zhou, C. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453, 504–506 (2008).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Hodgskiss, M. S., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productivity collapse to end Earth’s Great Oxidation. Proc. Natl Acad. Sci. 116, 17207–17212 (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Crockford, P. W. et al. Claypool continued: Extending the isotopic record of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Waldeck, A. R., Hemingway, J. D., Yao, W., Paytan, A. & Johnston, D. T. The triple oxygen isotope composition of marine sulfate and 130 million years of microbial control. Proc. Natl Acad. Sci. 119, e2202018119 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Waldeck, A. R. et al. Deciphering the atmospheric signal in marine sulfate oxygen isotope composition. Earth Planet. Sci. Lett. 522, 12–19 (2019).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Killingsworth, B. A., Bao, H. & Kohl, I. E. Assessing pyrite-derived sulfate in the Mississippi River with four years of sulfur and triple-oxygen isotope data. Environ. Sci. Technol. 52, 6126–6136 (2018).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Hemingway, J. D. et al. Triple oxygen isotope insight into terrestrial pyrite oxidation. Proc. Natl Acad. Sci. 117, 7650–7657 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hemingway, J. D., Goldberg, M. L., Sutherland, K. M. & Johnston, D. T. Theoretical estimates of sulfoxyanion triple-oxygen equilibrium isotope effects and their implications. Geochimica et. Cosmochimica Acta 336, 353–371 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Waldeck, A. R. et al. Calibrating the triple oxygen isotope composition of evaporite minerals as a proxy for marine sulfate. Earth Planet. Sci. Lett. 578, 117320 (2022).

Article 
CAS 
MATH 

Google Scholar
 

Bertran, E. et al. Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances. ISME J. 14, 1508–1519 (2020).

Article 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Moses, C. O., Nordstrom, D. K., Herman, J. S. & Mills, A. L. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et. Cosmochimica Acta 51, 1561–1571 (1987).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Rimstidt, J. D. & Vaughan, D. J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochimica et. Cosmochimica Acta 67, 873–880 (2003).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Gu, X., Heaney, P. J., Reis, F. D. A. & Brantley, S. L. Deep abiotic weathering of pyrite. Science 370, eabb8092 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Taylor, B. E., Wheeler, M. C. & Nordstrom, D. K. Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite. Geochimica et. Cosmochimica Acta 48, 2669–2678 (1984).

Article 
ADS 
CAS 

Google Scholar
 

Reedy, B. J., Beattie, J. K. & Lowson, R. T. A vibrational spectroscopic 18O tracer study of pyrite oxidation. Geochimica et. Cosmochimica Acta 55, 1609–1614 (1991).

Article 
ADS 
CAS 

Google Scholar
 

Van Stempvoort, D. R., & Krouse, H. R. (1994). Controls of δ18O in sulfate: Review of experimental data and application to specific environments.

Balci, N., Shanks, W. C. III, Mayer, B. & Mandernack, K. W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochimica et. Cosmochimica Acta 71, 3796–3811 (2007).

Article 
ADS 
CAS 

Google Scholar
 

Heidel, C., Tichomirowa, M. & Junghans, M. The influence of pyrite grain size on the final oxygen isotope difference between sulphate and water in aerobic pyrite oxidation experiments. Isotopes Environ. health Stud. 45, 321–342 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Tichomirowa, M. & Junghans, M. Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments. Appl. Geochem. 24, 2072–2092 (2009).

Article 
ADS 
CAS 

Google Scholar
 

Heidel, C. & Tichomirowa, M. The role of dissolved molecular oxygen in abiotic pyrite oxidation under acid pH conditions–experiments with 18O-enriched molecular oxygen. Appl. Geochem. 25, 1664–1675 (2010).

Article 
ADS 
CAS 

Google Scholar
 

Kohl, I. & Bao, H. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH= 2–11). Geochimica et. Cosmochimica Acta 75, 1785–1798 (2011).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Cowie, B. R. & Johnston, D. T. High-precision measurement and standard calibration of triple oxygen isotopic compositions (δ18O, Δ′ 17O) of sulfate by F2 laser fluorination. Chem. Geol. 440, 50–59 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Bao, H., Fairchild, I. J., Wynn, P. M. & Spötl, C. Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science 323, 119–122 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl Acad. Sci. 106, 8123–8127 (2009).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Tarhan, L. G., Droser, M. L., Planavsky, N. J. & Johnston, D. T. Protracted development of bioturbation through the early Palaeozoic Era. Nat. Geosci. 8, 865–869 (2015).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Jackson, G. D., Iannelli, T. R., Knight, R. D., & Lebel, D. Neohelikian Bylot Supergroup of Borden Rift Basin, northwestern Baffin Island, District of Franklin. Current research, part A. Geological Survey of Canada, Paper, 639–649 (1985).

Retallack, G. J. Early forest soils and their role in Devonian global change. Science 276, 583–585 (1997).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Dahl, T. W. & Arens, S. K. The impacts of land plant evolution on Earth’s climate and oxygenation state–An interdisciplinary review. Chem. Geol. 547, 119665 (2020).

Article 
CAS 

Google Scholar
 

Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic. Proc. Natl Acad. Sci. USA 118, e2105074118 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Leavitt, W. D., Halevy, I., Bradley, A. S. & Johnston, D. T. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc. Natl Acad. Sci. USA 110, 11244–11249 (2013).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Maffre, P. et al. The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian. Am. J. Sci. 322, 461–492 (2022).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Kalderon-Asael, B. et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 595, 394–398 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Müller, I. A., Brunner, B. & Coleman, M. Isotopic evidence of the pivotal role of sulfite oxidation in shaping the oxygen isotope signature of sulfate. Chem. Geol. 354, 186–202 (2013).

Article 
ADS 

Google Scholar
 

Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et. Cosmochimica Acta 70, 5653–5664 (2006).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci. Rev. 178, 1–28 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Elick, J. M., Driese, S. G. & Mora, C. I. Very large plant and root traces from the Early to Middle Devonian: implications for early terrestrial ecosystems and atmospheric p (CO2). Geology 26, 143–146 (1998).

Article 
ADS 
CAS 

Google Scholar
 

Berkner, L. V. & Marshall, L. C. On the origin and rise of oxygen concentration in the Earth’s atmosphere. J. Atmos. Sci. 22, 225–261 (1965).

Article 
ADS 
CAS 
MATH 

Google Scholar
 

Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. 113, 9704–9709 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Edwards, C. T., Saltzman, M. R., Royer, D. L. & Fike, D. A. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nat. Geosci. 10, 925–929 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Stockey, R. G. et al. Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras. Nat. Geosci. 17, 667–674 (2024).

Article 
CAS 

Google Scholar
 

Le Gendre, E., Martin, E., Villemant, B., Cartigny, P. & Assayag, N. A simple and reliable anion‐exchange resin method for sulfate extraction and purification suitable for multiple O‐and S‐isotope measurements. Rapid Commun. Mass Spectrom. 31, 137–144 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Bao, H. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution. Anal. Chem. 78, 304–309 (2006).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Bao, H. et al. Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406, 176–178 (2000).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Yeung, L. Y., Hayles, J. A., Hu, H., Ash, J. L. & Sun, T. Scale distortion from pressure baselines as a source of inaccuracy in triple‐isotope measurements. Rapid Commun. Mass Spectrom. 32, 1811–1821 (2018).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Wostbrock, J. A., Cano, E. J. & Sharp, Z. D. An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2. Chem. Geol. 533, 119432 (2020).

Article 
CAS 

Google Scholar
 

Ellis, N. M. & Passey, B. H. A novel method for high-precision triple oxygen isotope analysis of diverse Earth materials using high temperature conversion–methanation–fluorination and isotope ratio mass spectrometry. Chem. Geol. 635, 121616 (2023).

Article 
CAS 

Google Scholar
 

Wei, Y., Yan, H., Peng, Y. & Bao, H. Quantitative Conversion of Sulfate Oxygen for High-Precision Triple Oxygen Isotope Analysis. Anal. Chem. 96, 19387–19395 (2024).

Article 
CAS 
PubMed 

Google Scholar