Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B: Biol. Sci. 361, 931–950 (2006).
Garrels, R. M. & Lerman, A. Phanerozoic cycles of sedimentary carbon and sulfur. Proc. Natl Acad. Sci. 78, 4652–4656 (1981).
Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).
Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M. & Wildman, R. A. Jr Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 31, 105–134 (2003).
Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008).
Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).
Sperling, E. A. et al. A long-term record of early to mid-Paleozoic marine redox change. Sci. Adv. 7, eabf4382 (2021).
Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci. Rev. 110, 26–57 (2012).
Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).
Sperling, E. A., Knoll, A. H. & Girguis, P. R. The ecological physiology of Earth’s second oxygen revolution. Annu. Rev. Ecol., Evolution, Syst. 46, 215–235 (2015).
Sahoo, S. K. et al. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14, 457–468 (2016).
Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 361, 174–177 (2018).
Warke, M. R. et al. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”. Proc. Natl Acad. Sci. 117, 13314–13320 (2020).
Crockford, P. W. et al. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559, 613–616 (2018).
Thiemens, M. H. History and applications of mass-independent isotope effects. Annu. Rev. Earth Planet. Sci. 34, 217–262 (2006).
Bao, H., Lyons, J. R. & Zhou, C. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453, 504–506 (2008).
Hodgskiss, M. S., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productivity collapse to end Earth’s Great Oxidation. Proc. Natl Acad. Sci. 116, 17207–17212 (2019).
Crockford, P. W. et al. Claypool continued: Extending the isotopic record of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).
Waldeck, A. R., Hemingway, J. D., Yao, W., Paytan, A. & Johnston, D. T. The triple oxygen isotope composition of marine sulfate and 130 million years of microbial control. Proc. Natl Acad. Sci. 119, e2202018119 (2022).
Waldeck, A. R. et al. Deciphering the atmospheric signal in marine sulfate oxygen isotope composition. Earth Planet. Sci. Lett. 522, 12–19 (2019).
Killingsworth, B. A., Bao, H. & Kohl, I. E. Assessing pyrite-derived sulfate in the Mississippi River with four years of sulfur and triple-oxygen isotope data. Environ. Sci. Technol. 52, 6126–6136 (2018).
Hemingway, J. D. et al. Triple oxygen isotope insight into terrestrial pyrite oxidation. Proc. Natl Acad. Sci. 117, 7650–7657 (2020).
Hemingway, J. D., Goldberg, M. L., Sutherland, K. M. & Johnston, D. T. Theoretical estimates of sulfoxyanion triple-oxygen equilibrium isotope effects and their implications. Geochimica et. Cosmochimica Acta 336, 353–371 (2022).
Waldeck, A. R. et al. Calibrating the triple oxygen isotope composition of evaporite minerals as a proxy for marine sulfate. Earth Planet. Sci. Lett. 578, 117320 (2022).
Bertran, E. et al. Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances. ISME J. 14, 1508–1519 (2020).
Moses, C. O., Nordstrom, D. K., Herman, J. S. & Mills, A. L. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et. Cosmochimica Acta 51, 1561–1571 (1987).
Rimstidt, J. D. & Vaughan, D. J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochimica et. Cosmochimica Acta 67, 873–880 (2003).
Gu, X., Heaney, P. J., Reis, F. D. A. & Brantley, S. L. Deep abiotic weathering of pyrite. Science 370, eabb8092 (2020).
Taylor, B. E., Wheeler, M. C. & Nordstrom, D. K. Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite. Geochimica et. Cosmochimica Acta 48, 2669–2678 (1984).
Reedy, B. J., Beattie, J. K. & Lowson, R. T. A vibrational spectroscopic 18O tracer study of pyrite oxidation. Geochimica et. Cosmochimica Acta 55, 1609–1614 (1991).
Van Stempvoort, D. R., & Krouse, H. R. (1994). Controls of δ18O in sulfate: Review of experimental data and application to specific environments.
Balci, N., Shanks, W. C. III, Mayer, B. & Mandernack, K. W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochimica et. Cosmochimica Acta 71, 3796–3811 (2007).
Heidel, C., Tichomirowa, M. & Junghans, M. The influence of pyrite grain size on the final oxygen isotope difference between sulphate and water in aerobic pyrite oxidation experiments. Isotopes Environ. health Stud. 45, 321–342 (2009).
Tichomirowa, M. & Junghans, M. Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments. Appl. Geochem. 24, 2072–2092 (2009).
Heidel, C. & Tichomirowa, M. The role of dissolved molecular oxygen in abiotic pyrite oxidation under acid pH conditions–experiments with 18O-enriched molecular oxygen. Appl. Geochem. 25, 1664–1675 (2010).
Kohl, I. & Bao, H. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH= 2–11). Geochimica et. Cosmochimica Acta 75, 1785–1798 (2011).
Cowie, B. R. & Johnston, D. T. High-precision measurement and standard calibration of triple oxygen isotopic compositions (δ18O, Δ′ 17O) of sulfate by F2 laser fluorination. Chem. Geol. 440, 50–59 (2016).
Bao, H., Fairchild, I. J., Wynn, P. M. & Spötl, C. Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science 323, 119–122 (2009).
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl Acad. Sci. 106, 8123–8127 (2009).
Tarhan, L. G., Droser, M. L., Planavsky, N. J. & Johnston, D. T. Protracted development of bioturbation through the early Palaeozoic Era. Nat. Geosci. 8, 865–869 (2015).
Jackson, G. D., Iannelli, T. R., Knight, R. D., & Lebel, D. Neohelikian Bylot Supergroup of Borden Rift Basin, northwestern Baffin Island, District of Franklin. Current research, part A. Geological Survey of Canada, Paper, 639–649 (1985).
Retallack, G. J. Early forest soils and their role in Devonian global change. Science 276, 583–585 (1997).
Dahl, T. W. & Arens, S. K. The impacts of land plant evolution on Earth’s climate and oxygenation state–An interdisciplinary review. Chem. Geol. 547, 119665 (2020).
Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).
Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic. Proc. Natl Acad. Sci. USA 118, e2105074118 (2021).
Leavitt, W. D., Halevy, I., Bradley, A. S. & Johnston, D. T. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc. Natl Acad. Sci. USA 110, 11244–11249 (2013).
Maffre, P. et al. The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian. Am. J. Sci. 322, 461–492 (2022).
McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).
Kalderon-Asael, B. et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 595, 394–398 (2021).
Müller, I. A., Brunner, B. & Coleman, M. Isotopic evidence of the pivotal role of sulfite oxidation in shaping the oxygen isotope signature of sulfate. Chem. Geol. 354, 186–202 (2013).
Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et. Cosmochimica Acta 70, 5653–5664 (2006).
Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci. Rev. 178, 1–28 (2018).
Elick, J. M., Driese, S. G. & Mora, C. I. Very large plant and root traces from the Early to Middle Devonian: implications for early terrestrial ecosystems and atmospheric p (CO2). Geology 26, 143–146 (1998).
Berkner, L. V. & Marshall, L. C. On the origin and rise of oxygen concentration in the Earth’s atmosphere. J. Atmos. Sci. 22, 225–261 (1965).
Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. 113, 9704–9709 (2016).
Edwards, C. T., Saltzman, M. R., Royer, D. L. & Fike, D. A. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nat. Geosci. 10, 925–929 (2017).
Stockey, R. G. et al. Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras. Nat. Geosci. 17, 667–674 (2024).
Le Gendre, E., Martin, E., Villemant, B., Cartigny, P. & Assayag, N. A simple and reliable anion‐exchange resin method for sulfate extraction and purification suitable for multiple O‐and S‐isotope measurements. Rapid Commun. Mass Spectrom. 31, 137–144 (2017).
Bao, H. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution. Anal. Chem. 78, 304–309 (2006).
Bao, H. et al. Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406, 176–178 (2000).
Yeung, L. Y., Hayles, J. A., Hu, H., Ash, J. L. & Sun, T. Scale distortion from pressure baselines as a source of inaccuracy in triple‐isotope measurements. Rapid Commun. Mass Spectrom. 32, 1811–1821 (2018).
Wostbrock, J. A., Cano, E. J. & Sharp, Z. D. An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2. Chem. Geol. 533, 119432 (2020).
Ellis, N. M. & Passey, B. H. A novel method for high-precision triple oxygen isotope analysis of diverse Earth materials using high temperature conversion–methanation–fluorination and isotope ratio mass spectrometry. Chem. Geol. 635, 121616 (2023).
Wei, Y., Yan, H., Peng, Y. & Bao, H. Quantitative Conversion of Sulfate Oxygen for High-Precision Triple Oxygen Isotope Analysis. Anal. Chem. 96, 19387–19395 (2024).