Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Chang. 9, 84–87 (2019).

ADS 

Google Scholar
 

Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 11645–11650 (2017).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456–1457 (2008).

ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).

ADS 
CAS 
PubMed 

Google Scholar
 

Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).

CAS 
PubMed 
MATH 

Google Scholar
 

Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021).

ADS 
MATH 

Google Scholar
 

Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 11, 442–448 (2021).

ADS 
MATH 

Google Scholar
 

Roebroek, C. T. J., Duveiller, G., Seneviratne, S. I., Davin, E. L. & Cescatti, A. Releasing global forests from human management: how much more carbon could be stored? Science 380, 749–753 (2023).

ADS 
CAS 
PubMed 

Google Scholar
 

Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. Glob. Chang. 5, 1–13 (2022).


Google Scholar
 

Pearce, F. The forest forecast. Science 376, 788–791 (2022).

ADS 
PubMed 
MATH 

Google Scholar
 

Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 1–10 (2015).

ADS 
MATH 

Google Scholar
 

Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

ADS 
CAS 
PubMed 

Google Scholar
 

Pongratz, J. et al. Land use effects on climate: current state, recent progress, and emerging topics. Curr. Clim. Chang. Rep. 7, 99–120 (2021).

MATH 

Google Scholar
 

Winckler, J., Lejeune, Q., Reick, C. H. & Pongratz, J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett. 46, 745–755 (2019).

ADS 

Google Scholar
 

Winckler, J., Reick, C. H. & Pongratz, J. Why does the locally induced temperature response to land cover change differ across scenarios? Geophys. Res. Lett. 44, 3833–3840 (2017).

ADS 
MATH 

Google Scholar
 

Davin, E. L. & de Noblet-Ducoudre, N. Climatic impact of global-scale Deforestation: Radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).

ADS 
MATH 

Google Scholar
 

Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 104, 6550–6555 (2007).

ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Lu, N. et al. Biophysical and economic constraints on China’s natural climate solutions. Nat. Clim. Chang. 12, 847–853 (2022).

ADS 
MATH 

Google Scholar
 

Nanni, A. S. et al. The neotropical reforestation hotspots: a biophysical and socioeconomic typology of contemporary forest expansion. Glob. Environ. Chang. 54, 148–159 (2019).

MATH 

Google Scholar
 

Ge, J. et al. Local surface cooling from afforestation amplified by lower aerosol pollution. Nat. Geosci. 16, 781–788 (2023).

Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Chang. 11, 867–871 (2021).

ADS 
CAS 
MATH 

Google Scholar
 

Zhu, L. et al. Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation. Nat. Geosci. 16, 244–249 (2023).

ADS 
CAS 
MATH 

Google Scholar
 

Winckler, J., Reick, C. H. & Pongratz, J. Robust identification of local biogeophysical effects of land-cover change in a global climate model. J. Clim. 30, 1159–1176 (2017).

ADS 
MATH 

Google Scholar
 

Li, Y., Piao, S., Chen, A., Ciais, P. & Li, L. Z. X. Local and teleconnected temperature effects of afforestation and vegetation greening in China. Natl Sci. Rev. 7, 897–912 (2020).

PubMed 
MATH 

Google Scholar
 

Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett. 36, 1–6 (2009).

MATH 

Google Scholar
 

Luo, X. et al. An evaluation of CMIP6 models in representing the biophysical effects of deforestation with satellite‐based observations. J. Geophys. Res. Atmos. 128, 1–20 (2023).

MATH 

Google Scholar
 

Duveiller, G. et al. Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth Syst. Sci. Data 10, 1265–1279 (2018).

ADS 
MATH 

Google Scholar
 

Su, Y. et al. Asymmetric influence of forest cover gain and loss on land surface temperature. Nat. Clim. Chang. 13, 823–831 (2023).

ADS 
MATH 

Google Scholar
 

Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Chang. 7, 296–302 (2017).

ADS 
MATH 

Google Scholar
 

Liu, X. et al. Local temperature responses to actual land cover changes present significant latitudinal variability and asymmetry. Sci. Bull. 68, 2849–2861 (2023).

ADS 
MATH 

Google Scholar
 

Li, Y. et al. Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. Nat. Commun. 14, 121 (2023).

ADS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Butt, E. W. et al. Amazon deforestation causes strong regional warming. Proc. Natl. Acad. Sci. USA 120, 2017 (2023).

MATH 

Google Scholar
 

Zhang, Q. et al. Reforestation and surface cooling in temperate zones: mechanisms and implications. Glob. Chang. Biol. 26, 3384–3401 (2020).

ADS 
PubMed 
MATH 

Google Scholar
 

Intergovernmental Panel on Climate Change. Changing State of the Climate System. In Climate Change 2021—The Physical Science Basis 287–422 (Cambridge University Press, 2023).

Wang, Y. R., Hessen, D. O., Samset, B. H. & Stordal, F. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens. Environ. 280, 113181 (2022).


Google Scholar
 

Mildrexler, D. J., Zhao, M. & Running, S. W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Biogeosci. 116, 1–15 (2011).


Google Scholar
 

Novick, K. A. & Katul, G. G. The duality of reforestation impacts on surface and air temperature. J. Geophys. Res. Biogeosci. 125, 1–15 (2020).

MATH 

Google Scholar
 

Winckler, J. et al. Different response of surface temperature and air temperature to deforestation in climate models. Earth Syst. Dyn. 10, 473–484 (2019).

ADS 
MATH 

Google Scholar
 

Baldocchi, D. & Ma, S. How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA. Tellus. Ser. B Chem. Phys. Meteorol. 65, 1–19 (2013).


Google Scholar
 

Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Peng, S. S. et al. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 111, 2915–2919 (2014).

ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Reiners, P., Sobrino, J. & Kuenzer, C. Satellite-derived land surface temperature dynamics in the context of global change—a review. Remote Sens. 15, 1857 (2023).

Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 1–27 (2020).

MATH 

Google Scholar
 

Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 64–75 (2018).


Google Scholar
 

Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci. 122, 903–917 (2017).

MATH 

Google Scholar
 

Zhong, Z. et al. Reversed asymmetric warming of sub-diurnal temperature over land during recent decades. Nat. Commun. 14, 1–10 (2023).

ADS 
MATH 

Google Scholar
 

Lian, X. et al. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature. J. Geophys. Res. 122, 2254–2268 (2017).

MATH 

Google Scholar
 

Chen, C. et al. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv. 6, 1–10 (2020).

CAS 
MATH 

Google Scholar
 

Lin, H., Li, Y. & Zhao, L. Partitioning of sensible and latent heat fluxes in different vegetation types and their spatiotemporal variations based on 203 FLUXNET sites. J. Geophys. Res. Atmos. 127, e2022JD037142 (2022).

Walker, W. S. et al. The global potential for increased storage of carbon on land. Proc. Natl. Acad. Sci. USA 119, 1–12 (2022).

MATH 

Google Scholar
 

Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Zhao, K. & Jackson, R. B. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr. 84, 329–353 (2014).

MATH 

Google Scholar
 

Portmann, R. et al. Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation. Nat. Commun. 13, 1–11 (2022).

MATH 

Google Scholar
 

Hoek van Dijke, A. J. et al. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 15, 363–368 (2022).

ADS 
CAS 

Google Scholar
 

He, M. et al. Amplified warming from physiological responses to carbon dioxide reduces the potential of vegetation for climate change mitigation. Commun. Earth Environ. 3, 1–10 (2022).

ADS 
MATH 

Google Scholar
 

Deng, L., Zhu, G. Y., Tang, Z. S. & Shangguan, Z. P. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).


Google Scholar
 

Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 114, 9575–9580 (2017).

ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Chang. Biol. 8, 345–360 (2002).

ADS 
MATH 

Google Scholar
 

Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 92–101 (2023).

ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Li, Y. et al. Prioritizing Forestation in China Through Incorporating Biogeochemical and Local Biogeophysical Effects. Earth’s. Futur. 12, 1–18 (2024).


Google Scholar
 

Veldman, J. W. et al. Comment on “The global tree restoration potential. Science 366, 1–5 (2019).

MATH 

Google Scholar
 

Guo, Z. et al. Does plant ecosystem thermoregulation occur? An extratropical assessment at different spatial and temporal scales. New Phytol. 238, 1004–1018 (2022).

Hasler, N. et al. Accounting for albedo change to identify climate-positive tree cover restoration. Nat. Commun. 15, 2275 (2024).

ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Weber, J. et al. Chemistry-albedo feedbacks offset up to a third of forestation’s CO2 removal benefits. Science 383, 860–864 (2024).

ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Barnes, M. L. et al. A century of reforestation reduced anthropogenic warming in the Eastern United States. Earth’s Futur. 12, e2023EF003663 (2024).

Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).

PubMed 

Google Scholar
 

Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).

ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Gómez-González, S., Ochoa-Hueso, R. & Pausas, J. G. Afforestation falls short as a biodiversity strategy. Science 368, 1439–1439 (2020).

ADS 
PubMed 

Google Scholar
 

Parr, C. L., te Beest, M. & Stevens, N. Conflation of reforestation with restoration is widespread. Science 383, 698–701 (2024).

ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Selva, N., Chylarecki, P., Jonsson, B.-G. & Ibisch, P. L. Misguided forest action in EU Biodiversity Strategy. Science 368, 1438–1439 (2020).

ADS 
PubMed 

Google Scholar
 

Liu, Y. et al. Global mapping of fractional tree cover for forest cover change analysis. ISPRS J. Photogramm. Remote Sens. 211, 67–82 (2024).

ADS 
MATH 

Google Scholar
 

Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Xing, Z. et al. Estimation of daily mean land surface temperature at global scale using pairs of daytime and nighttime MODIS instantaneous observations. ISPRS J. Photogramm. Remote Sens. 178, 51–67 (2021).

ADS 
MATH 

Google Scholar
 

Liu, X. et al. Temporal upscaling of MODIS 1-km instantaneous land surface temperature to monthly mean value: method evaluation and product generation. IEEE Trans. Geosci. Remote Sens. 61, 1–14 (2023).

CAS 

Google Scholar
 

Zhang, T. et al. A global dataset of daily maximum and minimum near-surface air temperature at 1 km resolution over land (2003–2020). Earth Syst. Sci. Data 14, 5637–5649 (2022).

ADS 
MATH 

Google Scholar
 

Zhang, T., Zhou, Y., Wang, L., Zhao, K. & Zhu, Z. Estimating 1 km gridded daily air temperature using a spatially varying coefficient model with sign preservation. Remote Sens. Environ. 277, 113072 (2022).

MATH 

Google Scholar
 

Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).

MATH 

Google Scholar
 

Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

ADS 
CAS 
PubMed 
MATH 

Google Scholar
 

Zhang, Y. et al. Asymmetric impacts of forest gain and loss on tropical land surface temperature. Nat. Geosci. 13, 823–831 (2024).

MATH 

Google Scholar
 

Wang, H., Yue, C. & Luyssaert, S. Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations. Biogeosciences 20, 75–92 (2023).

ADS 
MATH 

Google Scholar
 

Chen, L., Dirmeyer, P. A., Guo, Z. & Schultz, N. M. Pairing FLUXNET sites to validate model representations of land-use/land-cover change. Hydrol. Earth Syst. Sci. 22, 111–125 (2018).

ADS 

Google Scholar
 

Novick, K. A. & Barnes, M. L. A practical exploration of land cover impacts on surface and air temperature when they are most consequential. Environ. Res. Clim. 2, 025007 (2023).

ADS 
MATH 

Google Scholar
 

Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).


Google Scholar
 

Rohde, R. A. & Hausfather, Z. The Berkeley earth land/ocean temperature record. Earth Syst. Sci. Data 12, 3469–3479 (2020).

ADS 
MATH 

Google Scholar
 

Duan, S. B. et al. Validation of collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ. 225, 16–29 (2019).

ADS 
MATH 

Google Scholar
 

Juang, J. Y., Katul, G., Siqueira, M., Stoy, P. & Novick, K. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34, 1–5 (2007).


Google Scholar
 

Monin, A. S. & Obukhov, A. M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 24, 163–187 (1954).

MATH 

Google Scholar
 

Peng, Z., Tang, R., Jiang, Y., Liu, M. & Li, Z.-L. Global estimates of 500 m daily aerodynamic roughness length from MODIS data. ISPRS J. Photogramm. Remote Sens. 183, 336–351 (2022).

ADS 
MATH 

Google Scholar
 

Rigden, A., Li, D. & Salvucci, G. Dependence of thermal roughness length on friction velocity across land cover types: a synthesis analysis using AmeriFlux data. Agric. Meteorol. 249, 512–519 (2018).


Google Scholar
 

Xu, H., Yue, C., Zhang, Y., Liu, D. & Piao, S. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc. Natl. Acad. Sci. USA 120, 2017 (2023).

MATH 

Google Scholar
 

Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 1–22 (2020).


Google Scholar