Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Chang. 9, 84–87 (2019).
Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 11645–11650 (2017).
Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456–1457 (2008).
Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).
Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).
Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021).
Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 11, 442–448 (2021).
Roebroek, C. T. J., Duveiller, G., Seneviratne, S. I., Davin, E. L. & Cescatti, A. Releasing global forests from human management: how much more carbon could be stored? Science 380, 749–753 (2023).
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. Glob. Chang. 5, 1–13 (2022).
Pearce, F. The forest forecast. Science 376, 788–791 (2022).
Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 1–10 (2015).
Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).
Pongratz, J. et al. Land use effects on climate: current state, recent progress, and emerging topics. Curr. Clim. Chang. Rep. 7, 99–120 (2021).
Winckler, J., Lejeune, Q., Reick, C. H. & Pongratz, J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett. 46, 745–755 (2019).
Winckler, J., Reick, C. H. & Pongratz, J. Why does the locally induced temperature response to land cover change differ across scenarios? Geophys. Res. Lett. 44, 3833–3840 (2017).
Davin, E. L. & de Noblet-Ducoudre, N. Climatic impact of global-scale Deforestation: Radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).
Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 104, 6550–6555 (2007).
Lu, N. et al. Biophysical and economic constraints on China’s natural climate solutions. Nat. Clim. Chang. 12, 847–853 (2022).
Nanni, A. S. et al. The neotropical reforestation hotspots: a biophysical and socioeconomic typology of contemporary forest expansion. Glob. Environ. Chang. 54, 148–159 (2019).
Ge, J. et al. Local surface cooling from afforestation amplified by lower aerosol pollution. Nat. Geosci. 16, 781–788 (2023).
Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Chang. 11, 867–871 (2021).
Zhu, L. et al. Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation. Nat. Geosci. 16, 244–249 (2023).
Winckler, J., Reick, C. H. & Pongratz, J. Robust identification of local biogeophysical effects of land-cover change in a global climate model. J. Clim. 30, 1159–1176 (2017).
Li, Y., Piao, S., Chen, A., Ciais, P. & Li, L. Z. X. Local and teleconnected temperature effects of afforestation and vegetation greening in China. Natl Sci. Rev. 7, 897–912 (2020).
Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett. 36, 1–6 (2009).
Luo, X. et al. An evaluation of CMIP6 models in representing the biophysical effects of deforestation with satellite‐based observations. J. Geophys. Res. Atmos. 128, 1–20 (2023).
Duveiller, G. et al. Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth Syst. Sci. Data 10, 1265–1279 (2018).
Su, Y. et al. Asymmetric influence of forest cover gain and loss on land surface temperature. Nat. Clim. Chang. 13, 823–831 (2023).
Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Chang. 7, 296–302 (2017).
Liu, X. et al. Local temperature responses to actual land cover changes present significant latitudinal variability and asymmetry. Sci. Bull. 68, 2849–2861 (2023).
Li, Y. et al. Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. Nat. Commun. 14, 121 (2023).
Butt, E. W. et al. Amazon deforestation causes strong regional warming. Proc. Natl. Acad. Sci. USA 120, 2017 (2023).
Zhang, Q. et al. Reforestation and surface cooling in temperate zones: mechanisms and implications. Glob. Chang. Biol. 26, 3384–3401 (2020).
Intergovernmental Panel on Climate Change. Changing State of the Climate System. In Climate Change 2021—The Physical Science Basis 287–422 (Cambridge University Press, 2023).
Wang, Y. R., Hessen, D. O., Samset, B. H. & Stordal, F. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens. Environ. 280, 113181 (2022).
Mildrexler, D. J., Zhao, M. & Running, S. W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Biogeosci. 116, 1–15 (2011).
Novick, K. A. & Katul, G. G. The duality of reforestation impacts on surface and air temperature. J. Geophys. Res. Biogeosci. 125, 1–15 (2020).
Winckler, J. et al. Different response of surface temperature and air temperature to deforestation in climate models. Earth Syst. Dyn. 10, 473–484 (2019).
Baldocchi, D. & Ma, S. How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA. Tellus. Ser. B Chem. Phys. Meteorol. 65, 1–19 (2013).
Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).
Peng, S. S. et al. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 111, 2915–2919 (2014).
Reiners, P., Sobrino, J. & Kuenzer, C. Satellite-derived land surface temperature dynamics in the context of global change—a review. Remote Sens. 15, 1857 (2023).
Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 1–27 (2020).
Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 64–75 (2018).
Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci. 122, 903–917 (2017).
Zhong, Z. et al. Reversed asymmetric warming of sub-diurnal temperature over land during recent decades. Nat. Commun. 14, 1–10 (2023).
Lian, X. et al. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature. J. Geophys. Res. 122, 2254–2268 (2017).
Chen, C. et al. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv. 6, 1–10 (2020).
Lin, H., Li, Y. & Zhao, L. Partitioning of sensible and latent heat fluxes in different vegetation types and their spatiotemporal variations based on 203 FLUXNET sites. J. Geophys. Res. Atmos. 127, e2022JD037142 (2022).
Walker, W. S. et al. The global potential for increased storage of carbon on land. Proc. Natl. Acad. Sci. USA 119, 1–12 (2022).
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
Zhao, K. & Jackson, R. B. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr. 84, 329–353 (2014).
Portmann, R. et al. Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation. Nat. Commun. 13, 1–11 (2022).
Hoek van Dijke, A. J. et al. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 15, 363–368 (2022).
He, M. et al. Amplified warming from physiological responses to carbon dioxide reduces the potential of vegetation for climate change mitigation. Commun. Earth Environ. 3, 1–10 (2022).
Deng, L., Zhu, G. Y., Tang, Z. S. & Shangguan, Z. P. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).
Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 114, 9575–9580 (2017).
Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Chang. Biol. 8, 345–360 (2002).
Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 92–101 (2023).
Li, Y. et al. Prioritizing Forestation in China Through Incorporating Biogeochemical and Local Biogeophysical Effects. Earth’s. Futur. 12, 1–18 (2024).
Veldman, J. W. et al. Comment on “The global tree restoration potential. Science 366, 1–5 (2019).
Guo, Z. et al. Does plant ecosystem thermoregulation occur? An extratropical assessment at different spatial and temporal scales. New Phytol. 238, 1004–1018 (2022).
Hasler, N. et al. Accounting for albedo change to identify climate-positive tree cover restoration. Nat. Commun. 15, 2275 (2024).
Weber, J. et al. Chemistry-albedo feedbacks offset up to a third of forestation’s CO2 removal benefits. Science 383, 860–864 (2024).
Barnes, M. L. et al. A century of reforestation reduced anthropogenic warming in the Eastern United States. Earth’s Futur. 12, e2023EF003663 (2024).
Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).
Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).
Gómez-González, S., Ochoa-Hueso, R. & Pausas, J. G. Afforestation falls short as a biodiversity strategy. Science 368, 1439–1439 (2020).
Parr, C. L., te Beest, M. & Stevens, N. Conflation of reforestation with restoration is widespread. Science 383, 698–701 (2024).
Selva, N., Chylarecki, P., Jonsson, B.-G. & Ibisch, P. L. Misguided forest action in EU Biodiversity Strategy. Science 368, 1438–1439 (2020).
Liu, Y. et al. Global mapping of fractional tree cover for forest cover change analysis. ISPRS J. Photogramm. Remote Sens. 211, 67–82 (2024).
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Xing, Z. et al. Estimation of daily mean land surface temperature at global scale using pairs of daytime and nighttime MODIS instantaneous observations. ISPRS J. Photogramm. Remote Sens. 178, 51–67 (2021).
Liu, X. et al. Temporal upscaling of MODIS 1-km instantaneous land surface temperature to monthly mean value: method evaluation and product generation. IEEE Trans. Geosci. Remote Sens. 61, 1–14 (2023).
Zhang, T. et al. A global dataset of daily maximum and minimum near-surface air temperature at 1 km resolution over land (2003–2020). Earth Syst. Sci. Data 14, 5637–5649 (2022).
Zhang, T., Zhou, Y., Wang, L., Zhao, K. & Zhu, Z. Estimating 1 km gridded daily air temperature using a spatially varying coefficient model with sign preservation. Remote Sens. Environ. 277, 113072 (2022).
Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).
Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
Zhang, Y. et al. Asymmetric impacts of forest gain and loss on tropical land surface temperature. Nat. Geosci. 13, 823–831 (2024).
Wang, H., Yue, C. & Luyssaert, S. Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations. Biogeosciences 20, 75–92 (2023).
Chen, L., Dirmeyer, P. A., Guo, Z. & Schultz, N. M. Pairing FLUXNET sites to validate model representations of land-use/land-cover change. Hydrol. Earth Syst. Sci. 22, 111–125 (2018).
Novick, K. A. & Barnes, M. L. A practical exploration of land cover impacts on surface and air temperature when they are most consequential. Environ. Res. Clim. 2, 025007 (2023).
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).
Rohde, R. A. & Hausfather, Z. The Berkeley earth land/ocean temperature record. Earth Syst. Sci. Data 12, 3469–3479 (2020).
Duan, S. B. et al. Validation of collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ. 225, 16–29 (2019).
Juang, J. Y., Katul, G., Siqueira, M., Stoy, P. & Novick, K. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34, 1–5 (2007).
Monin, A. S. & Obukhov, A. M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 24, 163–187 (1954).
Peng, Z., Tang, R., Jiang, Y., Liu, M. & Li, Z.-L. Global estimates of 500 m daily aerodynamic roughness length from MODIS data. ISPRS J. Photogramm. Remote Sens. 183, 336–351 (2022).
Rigden, A., Li, D. & Salvucci, G. Dependence of thermal roughness length on friction velocity across land cover types: a synthesis analysis using AmeriFlux data. Agric. Meteorol. 249, 512–519 (2018).
Xu, H., Yue, C., Zhang, Y., Liu, D. & Piao, S. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc. Natl. Acad. Sci. USA 120, 2017 (2023).
Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 1–22 (2020).