Singha, L. P. & Pandey, P. Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil. Crit. Rev. Biotechnol. 41, 749–766 (2021).

Article 
PubMed 
MATH 

Google Scholar
 

Mekonnen, B. A., Aragaw, T. A. & Genet, M. B. Bioremediation of petroleum hydrocarbon contaminated soil: A review on principles, degradation mechanisms, and advancements. Front. Environ. Sci. 12, 1354422 (2024).

Article 

Google Scholar
 

Koshlaf, E. & Ball, A. S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 3, 25–49 (2017).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Chettri, B., Singha, N. A. & Singh, A. K. Efficiency and kinetics of Assam crude oil degradation by Pseudomonas aeruginosa and Bacillus sp. Arch. Microbiol. 203, 5793–5803 (2021).

Article 
PubMed 

Google Scholar
 

Kuppusamy, S. et al. An overview of total petroleum hydrocarbons. Total Petroleum Hydrocarbons: Environmental Fate, Toxicity, and Remediation, 1–27 (2020).

Kuppusamy, S., Maddela, N. R., Megharaj, M. & Venkateswarlu, K. Total petroleum hydrocarbons. Environ. Fate Toxic. Remediat (2020).

Guarino, C., Spada, V. & Sciarrillo, R. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation-Assistited Landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170, 10–16 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Nemati, B., Baneshi, M. M., Akbari, H., Dehghani, R. & Mostafaii, G. Phytoremediation of pollutants in oil-contaminated soils by Alhagi camelorum: Evaluation and modeling. Sci. Rep. 14, 5502 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Dindar, E., Şağban, F. O. T. & Başkaya, H. S. Bioremediation of petroleum-contaminated soil. J. Biol. Environ. Sci. 7, 39–47 (2013).

MATH 

Google Scholar
 

Haider, F. U. et al. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res. 197, 111031 (2021).

Article 
PubMed 
MATH 

Google Scholar
 

da Silva Correa, H., Blum, C. T., Galvao, F. & Maranho, L. T. Effects of oil contamination on plant growth and development: A review. Environ. Sci. Pollut. Res. 29, 43501–43515 (2022).

Article 

Google Scholar
 

Xie, F. J., Chen, P. & Mao, L. H. Study on effect of oil-contaminated soil on seed germination. Adv. Mater. Res. 864, 2532–2536 (2014).

MATH 

Google Scholar
 

Gonzaga, M. I. S. et al. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Chemosphere 240, 124828 (2020).

Article 
PubMed 
MATH 

Google Scholar
 

Varjani, S., Upasani, V. N. & Pandey, A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci. Total Environ. 737, 139766 (2020).

Article 
PubMed 

Google Scholar
 

Baek, K.-H. et al. Effects of crude oil, oil components, and bioremediation on plant growth. J. Environ. Sci. Health Part A 39, 2465–2472 (2004).

Article 
MATH 

Google Scholar
 

Al-Tarawneh, A. Metal toxicity reduction on seed germination and seedling growth of Raphanus sp. and Arabidopsis sp. using date seed biochar. J. Ecol. Eng. 23, 67–82 (2022).

Article 
MATH 

Google Scholar
 

Tu, Y. et al. Biochar-dual oxidant composite particles alleviate the oxidative stress of phenolic acid on tomato seed germination. Antioxidants 12, 910–932 (2023).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Uslu, O. S., Babur, E., Alma, M. H. & Solaiman, Z. M. Walnut shell biochar increases seed germination and early growth of seedlings of fodder crops. Agriculture 10, 427–440 (2020).

Article 

Google Scholar
 

Sorana, I. T, Mihailescu, S., Strat, D. & Florentina, G. I. Effects of oil pollution on seed germination and seedling emergence toxicity. Rom. Biotechnol. Lett. 25, 1194–1201 (2020).

Article 
MATH 

Google Scholar
 

Sivkov, Y. & Nikiforov, A. Study of oil-contaminated soils phytotoxicity during bioremediation activities. J. Ecol. Eng. 22, 67–72 (2021).

Article 
MATH 

Google Scholar
 

Gogosz, A., Bona, C., Santos, G. & Botosso, P. Germination and initial growth of Campomanesia xanthocarpa O. Berg. (Myrtaceae), in petroleum-contaminated soil and bioremediated soil. Braz. J. Biol. 70, 977–986 (2010).

Article 
PubMed 

Google Scholar
 

Agnello, A. C., Huguenot, D., van Hullebusch, E. D. & Esposito, G. Citric acid-and Tween® 80-assisted phytoremediation of a co-contaminated soil: Alfalfa (Medicago sativa L.) performance and remediation potential. Environ. Sci. Pollut. Res. 23, 9215–9226 (2016).

Article 

Google Scholar
 

Inckot, R. C., Dos Santos, G. D. O., Bona, C. & De Souza, L. A. Germination and post-seminal development of Mimosa L. (Fabaceae) in diesel oil-contaminated soil. Bull. Environ. Contam. Toxicol. 110, 18–24 (2023).

Article 

Google Scholar
 

Zhu, H., Gao, Y. & Li, D. Germination and growth of grass species in soil contaminated by drill cuttings. West. North Am. Nat. 79, 49–55 (2019).

Article 
MATH 

Google Scholar
 

Wang, C., Zuo, J., Miao, F., Yang, C. & Song, G. Oil pollution of soil and its ecological impact on seed germinate of Salsola glauca Bunge in the Yellow River Delta Swamp, China. Ecol. Environ. 19, 782–785 (2010).


Google Scholar
 

Sun, Z., Xiao, X., Zhang, S., Wu, G. & Wang, Q. Tolerability of different plants for petroleum contaminated soil. Environ. Sci. Manag. 36, 130–132 (2011).

MATH 

Google Scholar
 

Cheng, G. & Li, P. Effects of petroleum on the seed germination and growth of wheat and alfalfa in soil. Seed 26, 24–27 (2007).

MATH 

Google Scholar
 

Li, M., Yu, H., Zheng, D., Klemeš, J. J. & Wang, J. Effects of salt and solidification treatment on the oil-contaminated soil: A case study in the coastal region of Tianjin, China. J. Clean. Prod. 312, 127619 (2021).

Article 

Google Scholar
 

Abdollahzadeh, T. et al. Phytoremediation of petroleum-contaminated soil by Salicornia: From PSY activity to physiological and morphological communications. Environ. Technol. 40, 2789–2801 (2019).

Article 
PubMed 
MATH 

Google Scholar
 

Ranjbar, G., Dehghani, F. & Rahimian, M. Endemic species of Salicornia with economic value in the flora of Iran. Iran Nat. 7, 45–50 (2022).

MATH 

Google Scholar
 

Alassali, A., Cybulska, I., Galvan, A. R. & Thomsen, M. H. Wet fractionation of the succulent halophyte Salicornia sinus-persica, with the aim of low input (water saving) biorefining into bioethanol. Appl. Microbiol. Biotechnol. 101, 1769–1779 (2017).

Article 
PubMed 

Google Scholar
 

Rhoades, J. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis: Part 3 Chemical Methods Vol. 5, 417–435 (1996).

Thomas, G. W. Soil pH and soil acidity. In Methods of Soil Analysis: Part 3 Chemical Methods, Vol. 5, 475–490 (1996).

Shahbazi, K., Romić, M., Ferguson, R. & Suvannang, N. Standard Operating Procedure for Soil Calcium Carbonate Equivalent Volumetric Calcimeter Method, 1–13 (Food and Agriculture Organization of the United Nations Rome , 2020).

Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).

Article 
ADS 
MATH 

Google Scholar
 

Bremner, J. Nitrogen-total. In Methods of soil analysis. Part Part III. 3rd ed. Madison (WI) 3, 1085–1121 (1996).

Olsen, S. R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Vol. USDA Cir.939. U.S. Washington (US Department of Agriculture, 1954).

Gee, G. Particle size analysis. Methods of soil analysis/ASA and SSSA, 383–411 (1986).

Fehrenbacher, J., Wilding, L. & Beavers, A. Comparison of electrode and flame photometer methods for sodium analysis of soil water. Soil Sci. Soc. Am. J. 27, 152–153 (1963).

Article 
ADS 
MATH 

Google Scholar
 

Sheen, H. T. & Kahler, H. L. Effect of ions on Mohr method for chloride determination. Ind. Eng. Chem. Anal. Edit. 10, 628–629 (1938).

Article 
MATH 

Google Scholar
 

Yousaf, U. et al. Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil. Chemosphere 286, 131782 (2022).

Article 
PubMed 

Google Scholar
 

Allamin, I. A. et al. Rhizodegradation of petroleum oily sludge-contaminated soil using Cajanus cajan increases the diversity of soil microbial community. Sci. Rep. 10, 1–11 (2020).

Article 

Google Scholar
 

Barati, M. et al. The ameliorating effect of poultry manure and its biochar on petroleum-contaminated soil remediation at two times of cultivation. J. Chem. Health Risks 12, 33–46 (2020).

MATH 

Google Scholar
 

Hussain, F. et al. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 153, 80–88 (2018).

Article 
MATH 

Google Scholar
 

AtaeiNasab, T., Balouchi, H., Moradi, A. & MovahhediDehnavi, M. Evaluation of seed germination of Salicornia persica under iso osmotic conditions using hydrotime and halotime models. Plant Prod. 46, 79–90 (2023).


Google Scholar
 

Chaghari, Z., Agha, Y. A. R. I. F., Ebrahimpour, G. H., Shaker, B. H. & Bernard, F. The effects of gas oil on germination and seedling development of some crop species. Environ. Sci. 13, 69–80 (2006).


Google Scholar
 

Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Feiziasl, V., Fotovat, A., Astaraei, A., Lakzian, A. & Jafarzadeh, J. Determination of chlorophyll content and nitrogen status using SPAD in dryland wheat (Triticum aestivum L.) genotypes. Iran. J. Field Crops Res. 17, 221–240 (2019).


Google Scholar
 

Raza, A. et al. Evaluation of arsenic-induced stress in Dahlia pinnata Cav.: Morphological and physiological response. Soil Sedim. Contam. Int. J. 28, 716–728 (2019).

Article 
MATH 

Google Scholar
 

Ebadollahi-Natanzi, A. & Arab-Rahmatipour, G. A study on chlorophyll, total carotenoid and beta-carotene contents in carrot and the effect of climate on them. J. Med. Plants 19, 254–265 (2020).

Article 

Google Scholar
 

Moghaddam, A., Larijani, H. R., Oveysi, M., Moghaddam, H. R. T. & Nasri, M. Alleviating the adverse effects of salinity stress on Salicornia persica using sodium nitroprusside and potassium nitrate. BMC Plant Biol. 23, 166–178 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gong, P., Wilke, B.-M., Strozzi, E. & Fleischmann, S. Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils. Chemosphere 44, 491–500 (2001).

Article 
ADS 
PubMed 
MATH 

Google Scholar
 

Ali Khan, A. H. et al. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production. J. Environ. Manag. 176, 54–60 (2016).

Article 
MATH 

Google Scholar
 

Shahsavari, E., Adetutu, E. M., Taha, M. & Ball, A. S. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. J. Environ. Manag. 155, 171–176 (2015).

Article 

Google Scholar
 

Shahzad, A., Saddiqui, S. & Bano, A. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge. Int. J. Phytoremediat. 18, 521–526 (2016).

Article 

Google Scholar
 

Adam, G. & Duncan, H. Influence of diesel fuel on seed germination. Environ. Pollut. 120, 363–370 (2002).

Article 
PubMed 
MATH 

Google Scholar
 

Akinola, M. & Njoku, K. Mutagenic effect of crude oil on accessions of Glycine max L. (Merril). Pak. J. Sci. Ind. Res. 50, 330–334 (2007).


Google Scholar
 

Sharifi, M., Sadeghi, Y. & Akbarpour, M. Germination and growth of six plant species on contaminated soil with spent oil. Int. J. Environ. Sci. Technol. 4, 463–470 (2007).

Article 
MATH 

Google Scholar
 

Peng, Y., Zhu, S. & Yuan, Y. Effects of combined application of biochar and sludge compost on seeds germination of oil sunflower (Helianthus annuus L.) and water retention capacity in two different soils. E3S Web Conf. 536, 1–5 (2024).

Article 
MATH 

Google Scholar
 

Yapa, N., Jayakody, N., Madhushan, A. & Pelawatta, A. Effect of biofertilizers and organic amendments on germination and seedling growth of common dry zone forest species in Sri Lanka: Sustainable reforestation practices in Sri Lanka. Turk. J. Agric. Food Sci. Technol. 11, 287–291 (2023).


Google Scholar
 

Ebrahimi, M., Souri, M. K., Mousavi, A. & Sahebani, N. Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chem. Biol. Technol. Agric. 8, 19. https://doi.org/10.1186/s40538-021-00216-9 (2021).

Article 

Google Scholar
 

Alvarez, J., Pasian, C., Lal, R., Lopez, R. & Fernandez, M. V. Biochar as growing media replacement for ornamental plant production. J. Appl. Hortic. 19, 205–214 (2017).

Article 

Google Scholar
 

Carter, S., Shackley, S., Sohi, S., Suy, T. B. & Haefele, S. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3, 404–418 (2013).

Article 

Google Scholar
 

Nazarideljou, M. J. & Heidari, Z. Effects of vermicompost on growth parameters, water use efficiency and quality of zinnia bedding plants (Zinnia elegance ‘Dreamland Red’) under different irrigation regimes. Int. J. Hortic. Sci. Technol. 1, 141–150 (2014).


Google Scholar
 

Shirdam, R., Zand, A. D., Bidhendi, G. N. & Mehrdadi, N. Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phytoprotection 89, 21–29 (2008).

Article 

Google Scholar
 

Kechavarzi, C., Pettersson, K., Leeds-Harrison, P., Ritchie, L. & Ledin, S. Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ. Pollut. 145, 68–74 (2007).

Article 
PubMed 

Google Scholar
 

Ayotamuno, J. M. & Kogbara, R. B. Determining the tolerance level of Zea mays (maize) to a crude oil polluted agricultural soil. Afr. J. Biotechnol. 6, 1332–1337 (2007).


Google Scholar
 

Ekundayo, E., Emede, T. & Osayande, D. Effects of crude oil spillage on growth and yield of maize (Zea mays L.) in soils of midwestern Nigeria. Plant Foods Hum. Nutr. 56, 313–324 (2001).

Article 
PubMed 

Google Scholar
 

Ogboghodo, I., Iruaga, E., Osemwota, I. & Chokor, J. An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types–Forcados light and Escravos light. Environ. Monit. Assess. 96, 143–152 (2004).

Article 
PubMed 

Google Scholar
 

Chupakhina, G. & Maslennikov, P. Plant adaptation to oil stress. Russ. J. Ecol. 35, 290–295 (2004).

Article 

Google Scholar
 

Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C. & Broll, G. Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int. J. Phytoremediat. 8, 273–284 (2006).

Article 

Google Scholar
 

Merkl, N., Schultze-Kraft, R. & Infante, C. Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut. 138, 86–91 (2005).

Article 
PubMed 
MATH 

Google Scholar
 

Kamath, R., Rentz, J., Schnoor, J. & Alvarez, P. In Studies in surface science and catalysis Vol. 151, 447–478 (2004).

Amadi, A., Dickson, A. & Maate, G. Remediation of oil polluted soils: 1. Effect of organic and inorganic nutrient supplements on the performance of maize (Zea may L.). Water Air Soil Pollut. 66, 59–76 (1993).

Article 
ADS 

Google Scholar
 

Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 46, 437–444 (2008).

Article 

Google Scholar
 

Windeatt, J. H. et al. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manag. 146, 189–197 (2014).

Article 
MATH 

Google Scholar
 

Keabetswe, L., Shao, G. C., Cui, J., Lu, J. & Stimela, T. A combination of biochar and regulated deficit irrigation improves tomato fruit quality: A comprehensive quality analysis. Folia Hortic. 31, 181–193 (2019).

Article 

Google Scholar
 

Chirakkara, R. A. & Reddy, K. R. Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol. Eng. 85, 265–274 (2015).

Article 
MATH 

Google Scholar
 

Liste, H.-H. & Felgentreu, D. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 31, 43–52 (2006).

Article 
MATH 

Google Scholar
 

Huang, L., Gu, M., Yu, P., Zhou, C. & Liu, X. Biochar and vermicompost amendments affect substrate properties and plant growth of basil and tomato. Agronomy 10, 224–236 (2020).

Article 

Google Scholar
 

Atkinson, C. J., Fitzgerald, J. D. & Hipps, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 337, 1–18 (2010).

Article 

Google Scholar
 

Huang, L., Niu, G., Feagley, S. E. & Gu, M. Evaluation of a hardwood biochar and two composts mixes as replacements for a peat-based commercial substrate. Ind. Crops Prod. 129, 549–560 (2019).

Article 

Google Scholar
 

Hussain, M. et al. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 17, 685–716 (2017).

Article 
MATH 

Google Scholar
 

Baruah, P., Saikia, R. R., Baruah, P. P. & Deka, S. Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk. Environ. Sci. Pollut. Res. 21, 12530–12538 (2014).

Article 
MATH 

Google Scholar
 

Bakina, L. et al. Mutual effects of crude oil and plants in contaminated soil: A field study. Environ. Geochem. Health 44, 69–82 (2022).

Article 
PubMed 
MATH 

Google Scholar
 

Peretiemo-Clarke, B. & Achuba, F. Phytochemical effect of petroleum on peanut (Arachis hypogea) seedlings. Plant Pathol. J. 6, 179–182 (2007).

Article 

Google Scholar
 

Arellano, P., Tansey, K., Balzter, H. & Tellkamp, M. Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the Amazon rainforest of Ecuador. PloS one 12, e0169867 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arellano, P., Tansey, K., Balzter, H. & Boyd, D. S. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ. Pollut. 205, 225–239 (2015).

Article 
PubMed 

Google Scholar
 

Han, G., Cui, B., Zhang, X. & Li, K. The effects of petroleum-contaminated soil on photosynthesis of Amorpha fruticosa seedlings. Int. J. Environ. Sci. Technol. 13, 2383–2392 (2016).

Article 
MATH 

Google Scholar
 

Osuagwu, A. N., Okigbo, A. U., Ekpo, I. A., Chukwurah, P. N. & Agbor, R. B. Effect of crude oil pollution on growth parameters, chlorophyll content and bulbils yield in air potato (Dioscorea bulbifera L.). Int. J. Appl. Sci. Technol. 3, 37–42 (2013).


Google Scholar
 

Rosli, N. S. M., Abdullah, R., Yaacob, J. S. & Razali, R. B. R. Effect of biochar as a hydroponic substrate on growth, colour and nutritional content of red lettuce (Lactuca sativa L.). Bragantia 82, e20220177 (2023).

Article 

Google Scholar
 

Song, W. & Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 94, 138–145 (2012).

Article 
MATH 

Google Scholar
 

Wang, X.-X., Zhao, F., Zhang, G., Zhang, Y. & Yang, L. Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Front. Plant Sci. 8, 1978–1989 (2017).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar