Singha, L. P. & Pandey, P. Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil. Crit. Rev. Biotechnol. 41, 749–766 (2021).
Mekonnen, B. A., Aragaw, T. A. & Genet, M. B. Bioremediation of petroleum hydrocarbon contaminated soil: A review on principles, degradation mechanisms, and advancements. Front. Environ. Sci. 12, 1354422 (2024).
Koshlaf, E. & Ball, A. S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 3, 25–49 (2017).
Chettri, B., Singha, N. A. & Singh, A. K. Efficiency and kinetics of Assam crude oil degradation by Pseudomonas aeruginosa and Bacillus sp. Arch. Microbiol. 203, 5793–5803 (2021).
Kuppusamy, S. et al. An overview of total petroleum hydrocarbons. Total Petroleum Hydrocarbons: Environmental Fate, Toxicity, and Remediation, 1–27 (2020).
Kuppusamy, S., Maddela, N. R., Megharaj, M. & Venkateswarlu, K. Total petroleum hydrocarbons. Environ. Fate Toxic. Remediat (2020).
Guarino, C., Spada, V. & Sciarrillo, R. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation-Assistited Landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170, 10–16 (2017).
Nemati, B., Baneshi, M. M., Akbari, H., Dehghani, R. & Mostafaii, G. Phytoremediation of pollutants in oil-contaminated soils by Alhagi camelorum: Evaluation and modeling. Sci. Rep. 14, 5502 (2024).
Dindar, E., Şağban, F. O. T. & Başkaya, H. S. Bioremediation of petroleum-contaminated soil. J. Biol. Environ. Sci. 7, 39–47 (2013).
Haider, F. U. et al. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res. 197, 111031 (2021).
da Silva Correa, H., Blum, C. T., Galvao, F. & Maranho, L. T. Effects of oil contamination on plant growth and development: A review. Environ. Sci. Pollut. Res. 29, 43501–43515 (2022).
Xie, F. J., Chen, P. & Mao, L. H. Study on effect of oil-contaminated soil on seed germination. Adv. Mater. Res. 864, 2532–2536 (2014).
Gonzaga, M. I. S. et al. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Chemosphere 240, 124828 (2020).
Varjani, S., Upasani, V. N. & Pandey, A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci. Total Environ. 737, 139766 (2020).
Baek, K.-H. et al. Effects of crude oil, oil components, and bioremediation on plant growth. J. Environ. Sci. Health Part A 39, 2465–2472 (2004).
Al-Tarawneh, A. Metal toxicity reduction on seed germination and seedling growth of Raphanus sp. and Arabidopsis sp. using date seed biochar. J. Ecol. Eng. 23, 67–82 (2022).
Tu, Y. et al. Biochar-dual oxidant composite particles alleviate the oxidative stress of phenolic acid on tomato seed germination. Antioxidants 12, 910–932 (2023).
Uslu, O. S., Babur, E., Alma, M. H. & Solaiman, Z. M. Walnut shell biochar increases seed germination and early growth of seedlings of fodder crops. Agriculture 10, 427–440 (2020).
Sorana, I. T, Mihailescu, S., Strat, D. & Florentina, G. I. Effects of oil pollution on seed germination and seedling emergence toxicity. Rom. Biotechnol. Lett. 25, 1194–1201 (2020).
Sivkov, Y. & Nikiforov, A. Study of oil-contaminated soils phytotoxicity during bioremediation activities. J. Ecol. Eng. 22, 67–72 (2021).
Gogosz, A., Bona, C., Santos, G. & Botosso, P. Germination and initial growth of Campomanesia xanthocarpa O. Berg. (Myrtaceae), in petroleum-contaminated soil and bioremediated soil. Braz. J. Biol. 70, 977–986 (2010).
Agnello, A. C., Huguenot, D., van Hullebusch, E. D. & Esposito, G. Citric acid-and Tween® 80-assisted phytoremediation of a co-contaminated soil: Alfalfa (Medicago sativa L.) performance and remediation potential. Environ. Sci. Pollut. Res. 23, 9215–9226 (2016).
Inckot, R. C., Dos Santos, G. D. O., Bona, C. & De Souza, L. A. Germination and post-seminal development of Mimosa L. (Fabaceae) in diesel oil-contaminated soil. Bull. Environ. Contam. Toxicol. 110, 18–24 (2023).
Zhu, H., Gao, Y. & Li, D. Germination and growth of grass species in soil contaminated by drill cuttings. West. North Am. Nat. 79, 49–55 (2019).
Wang, C., Zuo, J., Miao, F., Yang, C. & Song, G. Oil pollution of soil and its ecological impact on seed germinate of Salsola glauca Bunge in the Yellow River Delta Swamp, China. Ecol. Environ. 19, 782–785 (2010).
Sun, Z., Xiao, X., Zhang, S., Wu, G. & Wang, Q. Tolerability of different plants for petroleum contaminated soil. Environ. Sci. Manag. 36, 130–132 (2011).
Cheng, G. & Li, P. Effects of petroleum on the seed germination and growth of wheat and alfalfa in soil. Seed 26, 24–27 (2007).
Li, M., Yu, H., Zheng, D., Klemeš, J. J. & Wang, J. Effects of salt and solidification treatment on the oil-contaminated soil: A case study in the coastal region of Tianjin, China. J. Clean. Prod. 312, 127619 (2021).
Abdollahzadeh, T. et al. Phytoremediation of petroleum-contaminated soil by Salicornia: From PSY activity to physiological and morphological communications. Environ. Technol. 40, 2789–2801 (2019).
Ranjbar, G., Dehghani, F. & Rahimian, M. Endemic species of Salicornia with economic value in the flora of Iran. Iran Nat. 7, 45–50 (2022).
Alassali, A., Cybulska, I., Galvan, A. R. & Thomsen, M. H. Wet fractionation of the succulent halophyte Salicornia sinus-persica, with the aim of low input (water saving) biorefining into bioethanol. Appl. Microbiol. Biotechnol. 101, 1769–1779 (2017).
Rhoades, J. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis: Part 3 Chemical Methods Vol. 5, 417–435 (1996).
Thomas, G. W. Soil pH and soil acidity. In Methods of Soil Analysis: Part 3 Chemical Methods, Vol. 5, 475–490 (1996).
Shahbazi, K., Romić, M., Ferguson, R. & Suvannang, N. Standard Operating Procedure for Soil Calcium Carbonate Equivalent Volumetric Calcimeter Method, 1–13 (Food and Agriculture Organization of the United Nations Rome , 2020).
Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).
Bremner, J. Nitrogen-total. In Methods of soil analysis. Part Part III. 3rd ed. Madison (WI) 3, 1085–1121 (1996).
Olsen, S. R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Vol. USDA Cir.939. U.S. Washington (US Department of Agriculture, 1954).
Gee, G. Particle size analysis. Methods of soil analysis/ASA and SSSA, 383–411 (1986).
Fehrenbacher, J., Wilding, L. & Beavers, A. Comparison of electrode and flame photometer methods for sodium analysis of soil water. Soil Sci. Soc. Am. J. 27, 152–153 (1963).
Sheen, H. T. & Kahler, H. L. Effect of ions on Mohr method for chloride determination. Ind. Eng. Chem. Anal. Edit. 10, 628–629 (1938).
Yousaf, U. et al. Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil. Chemosphere 286, 131782 (2022).
Allamin, I. A. et al. Rhizodegradation of petroleum oily sludge-contaminated soil using Cajanus cajan increases the diversity of soil microbial community. Sci. Rep. 10, 1–11 (2020).
Barati, M. et al. The ameliorating effect of poultry manure and its biochar on petroleum-contaminated soil remediation at two times of cultivation. J. Chem. Health Risks 12, 33–46 (2020).
Hussain, F. et al. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 153, 80–88 (2018).
AtaeiNasab, T., Balouchi, H., Moradi, A. & MovahhediDehnavi, M. Evaluation of seed germination of Salicornia persica under iso osmotic conditions using hydrotime and halotime models. Plant Prod. 46, 79–90 (2023).
Chaghari, Z., Agha, Y. A. R. I. F., Ebrahimpour, G. H., Shaker, B. H. & Bernard, F. The effects of gas oil on germination and seedling development of some crop species. Environ. Sci. 13, 69–80 (2006).
Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).
Feiziasl, V., Fotovat, A., Astaraei, A., Lakzian, A. & Jafarzadeh, J. Determination of chlorophyll content and nitrogen status using SPAD in dryland wheat (Triticum aestivum L.) genotypes. Iran. J. Field Crops Res. 17, 221–240 (2019).
Raza, A. et al. Evaluation of arsenic-induced stress in Dahlia pinnata Cav.: Morphological and physiological response. Soil Sedim. Contam. Int. J. 28, 716–728 (2019).
Ebadollahi-Natanzi, A. & Arab-Rahmatipour, G. A study on chlorophyll, total carotenoid and beta-carotene contents in carrot and the effect of climate on them. J. Med. Plants 19, 254–265 (2020).
Moghaddam, A., Larijani, H. R., Oveysi, M., Moghaddam, H. R. T. & Nasri, M. Alleviating the adverse effects of salinity stress on Salicornia persica using sodium nitroprusside and potassium nitrate. BMC Plant Biol. 23, 166–178 (2023).
Gong, P., Wilke, B.-M., Strozzi, E. & Fleischmann, S. Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils. Chemosphere 44, 491–500 (2001).
Ali Khan, A. H. et al. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production. J. Environ. Manag. 176, 54–60 (2016).
Shahsavari, E., Adetutu, E. M., Taha, M. & Ball, A. S. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. J. Environ. Manag. 155, 171–176 (2015).
Shahzad, A., Saddiqui, S. & Bano, A. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge. Int. J. Phytoremediat. 18, 521–526 (2016).
Adam, G. & Duncan, H. Influence of diesel fuel on seed germination. Environ. Pollut. 120, 363–370 (2002).
Akinola, M. & Njoku, K. Mutagenic effect of crude oil on accessions of Glycine max L. (Merril). Pak. J. Sci. Ind. Res. 50, 330–334 (2007).
Sharifi, M., Sadeghi, Y. & Akbarpour, M. Germination and growth of six plant species on contaminated soil with spent oil. Int. J. Environ. Sci. Technol. 4, 463–470 (2007).
Peng, Y., Zhu, S. & Yuan, Y. Effects of combined application of biochar and sludge compost on seeds germination of oil sunflower (Helianthus annuus L.) and water retention capacity in two different soils. E3S Web Conf. 536, 1–5 (2024).
Yapa, N., Jayakody, N., Madhushan, A. & Pelawatta, A. Effect of biofertilizers and organic amendments on germination and seedling growth of common dry zone forest species in Sri Lanka: Sustainable reforestation practices in Sri Lanka. Turk. J. Agric. Food Sci. Technol. 11, 287–291 (2023).
Ebrahimi, M., Souri, M. K., Mousavi, A. & Sahebani, N. Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chem. Biol. Technol. Agric. 8, 19. https://doi.org/10.1186/s40538-021-00216-9 (2021).
Alvarez, J., Pasian, C., Lal, R., Lopez, R. & Fernandez, M. V. Biochar as growing media replacement for ornamental plant production. J. Appl. Hortic. 19, 205–214 (2017).
Carter, S., Shackley, S., Sohi, S., Suy, T. B. & Haefele, S. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3, 404–418 (2013).
Nazarideljou, M. J. & Heidari, Z. Effects of vermicompost on growth parameters, water use efficiency and quality of zinnia bedding plants (Zinnia elegance ‘Dreamland Red’) under different irrigation regimes. Int. J. Hortic. Sci. Technol. 1, 141–150 (2014).
Shirdam, R., Zand, A. D., Bidhendi, G. N. & Mehrdadi, N. Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phytoprotection 89, 21–29 (2008).
Kechavarzi, C., Pettersson, K., Leeds-Harrison, P., Ritchie, L. & Ledin, S. Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ. Pollut. 145, 68–74 (2007).
Ayotamuno, J. M. & Kogbara, R. B. Determining the tolerance level of Zea mays (maize) to a crude oil polluted agricultural soil. Afr. J. Biotechnol. 6, 1332–1337 (2007).
Ekundayo, E., Emede, T. & Osayande, D. Effects of crude oil spillage on growth and yield of maize (Zea mays L.) in soils of midwestern Nigeria. Plant Foods Hum. Nutr. 56, 313–324 (2001).
Ogboghodo, I., Iruaga, E., Osemwota, I. & Chokor, J. An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types–Forcados light and Escravos light. Environ. Monit. Assess. 96, 143–152 (2004).
Chupakhina, G. & Maslennikov, P. Plant adaptation to oil stress. Russ. J. Ecol. 35, 290–295 (2004).
Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C. & Broll, G. Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int. J. Phytoremediat. 8, 273–284 (2006).
Merkl, N., Schultze-Kraft, R. & Infante, C. Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut. 138, 86–91 (2005).
Kamath, R., Rentz, J., Schnoor, J. & Alvarez, P. In Studies in surface science and catalysis Vol. 151, 447–478 (2004).
Amadi, A., Dickson, A. & Maate, G. Remediation of oil polluted soils: 1. Effect of organic and inorganic nutrient supplements on the performance of maize (Zea may L.). Water Air Soil Pollut. 66, 59–76 (1993).
Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 46, 437–444 (2008).
Windeatt, J. H. et al. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manag. 146, 189–197 (2014).
Keabetswe, L., Shao, G. C., Cui, J., Lu, J. & Stimela, T. A combination of biochar and regulated deficit irrigation improves tomato fruit quality: A comprehensive quality analysis. Folia Hortic. 31, 181–193 (2019).
Chirakkara, R. A. & Reddy, K. R. Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol. Eng. 85, 265–274 (2015).
Liste, H.-H. & Felgentreu, D. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 31, 43–52 (2006).
Huang, L., Gu, M., Yu, P., Zhou, C. & Liu, X. Biochar and vermicompost amendments affect substrate properties and plant growth of basil and tomato. Agronomy 10, 224–236 (2020).
Atkinson, C. J., Fitzgerald, J. D. & Hipps, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 337, 1–18 (2010).
Huang, L., Niu, G., Feagley, S. E. & Gu, M. Evaluation of a hardwood biochar and two composts mixes as replacements for a peat-based commercial substrate. Ind. Crops Prod. 129, 549–560 (2019).
Hussain, M. et al. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 17, 685–716 (2017).
Baruah, P., Saikia, R. R., Baruah, P. P. & Deka, S. Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk. Environ. Sci. Pollut. Res. 21, 12530–12538 (2014).
Bakina, L. et al. Mutual effects of crude oil and plants in contaminated soil: A field study. Environ. Geochem. Health 44, 69–82 (2022).
Peretiemo-Clarke, B. & Achuba, F. Phytochemical effect of petroleum on peanut (Arachis hypogea) seedlings. Plant Pathol. J. 6, 179–182 (2007).
Arellano, P., Tansey, K., Balzter, H. & Tellkamp, M. Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the Amazon rainforest of Ecuador. PloS one 12, e0169867 (2017).
Arellano, P., Tansey, K., Balzter, H. & Boyd, D. S. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ. Pollut. 205, 225–239 (2015).
Han, G., Cui, B., Zhang, X. & Li, K. The effects of petroleum-contaminated soil on photosynthesis of Amorpha fruticosa seedlings. Int. J. Environ. Sci. Technol. 13, 2383–2392 (2016).
Osuagwu, A. N., Okigbo, A. U., Ekpo, I. A., Chukwurah, P. N. & Agbor, R. B. Effect of crude oil pollution on growth parameters, chlorophyll content and bulbils yield in air potato (Dioscorea bulbifera L.). Int. J. Appl. Sci. Technol. 3, 37–42 (2013).
Rosli, N. S. M., Abdullah, R., Yaacob, J. S. & Razali, R. B. R. Effect of biochar as a hydroponic substrate on growth, colour and nutritional content of red lettuce (Lactuca sativa L.). Bragantia 82, e20220177 (2023).
Song, W. & Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 94, 138–145 (2012).
Wang, X.-X., Zhao, F., Zhang, G., Zhang, Y. & Yang, L. Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Front. Plant Sci. 8, 1978–1989 (2017).