Chassignet, E. P. et al. Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Dev. 13, 4595–4637 (2020).


Google Scholar
 

Chassignet, E. P. & Xu, X. On the Importance of High-Resolution in Large-Scale Ocean Models. Adv. Atmos. Sci. 38, 1621–1634 (2021).


Google Scholar
 

Frenger, I., Gruber, N., Knutti, R. & Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 6, 608–612 (2013).

CAS 

Google Scholar
 

Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G. & O’Neill, L. W. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping. J. Phys. Oceanogr. 45, 104–132 (2015).


Google Scholar
 

Griffies, S. M. et al. Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models. J. Clim. 28, 952–977 (2015).


Google Scholar
 

Rackow, T. et al. Delayed Antarctic sea-ice decline in high-resolution climate change simulations. Nat. Commun. 13, 637 (2022).

CAS 

Google Scholar
 

Amores, A., Jordà, G., Arsouze, T. & Le Sommer, J. Up to What Extent Can We Characterize Ocean Eddies Using Present-Day Gridded Altimetric Products?. J. Geophys. Res.: Oceans 123, 7220–7236 (2018).


Google Scholar
 

Ballarotta, M. et al. On the resolutions of ocean altimetry maps. Ocean Sci. 15, 1091–1109 (2019).


Google Scholar
 

Hallberg, R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model. 72, 92–103 (2013).


Google Scholar
 

Sein, D. V. et al. Ocean Modeling on a Mesh With Resolution Following the Local Rossby Radius. J. Adv. Modeling Earth Syst. 9, 2601–2614 (2017).


Google Scholar
 

Bian, C. et al. Oceanic mesoscale eddies as crucial drivers of global marine heatwaves. Nat. Commun. 14, 2970 (2023).

CAS 

Google Scholar
 

Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

CAS 

Google Scholar
 

Frey, D. I., Morozov, E. G. & Smirnova, D. A. Sea level anomalies affect the ocean circulation at abyssal depths. Sci. Rep. 13, 20829 (2023).

CAS 

Google Scholar
 

Pauling, A. G., Smith, I. J., Langhorne, P. J. & Bitz, C. M. Time-Dependent Freshwater Input From Ice Shelves: Impacts on Antarctic Sea Ice and the Southern Ocean in an Earth System Model. Geophys. Res. Lett. 44, 10,454–10,461 (2017).


Google Scholar
 

Thompson, A. F., Heywood, K. J., Schmidtko, S. & Stewart, A. L. Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci. 7, 879–884 (2014).

CAS 

Google Scholar
 

van Westen, R. M. & Dijkstra, H. A. Ocean eddies strongly affect global mean sea-level projections. Sci. Adv. 7, eabf1674 (2021).


Google Scholar
 

Beech, N. et al. Long-term evolution of ocean eddy activity in a warming world. Nat. Clim. Chang. 12, 910–917 (2022).


Google Scholar
 

Beech, N., Rackow, T., Semmler, T. & Jung, T. Exploring the ocean mesoscale at reduced computational cost with FESOM 2.5: efficient modeling strategies applied to the Southern Ocean. Geoscientific Model Dev. 17, 529–543 (2024).

CAS 

Google Scholar
 

Johnson, G. C. Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res.: Oceans 113, C05027 (2008).

Orsi, A. H., Johnson, G. C. & Bullister, J. L. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 43, 55–109 (1999).


Google Scholar
 

Frey, W. R., Morrison, A. L., Kay, J. E., Guzman, R. & Chepfer, H. The Combined Influence of Observed Southern Ocean Clouds and Sea Ice on Top-of-Atmosphere Albedo. J. Geophys. Res.: Atmospheres 123, 4461–4475 (2018).


Google Scholar
 

Haumann, F. A., Gruber, N., Münnich, M., Frenger, I. & Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537, 89–92 (2016).

CAS 

Google Scholar
 

Colman, R. A comparison of climate feedbacks in general circulation models. Clim. Dyn. 20, 865–873 (2003).


Google Scholar
 

Roach, C. J. & Speer, K. Exchange of Water Between the Ross Gyre and ACC Assessed by Lagrangian Particle Tracking. J. Geophys. Res.: Oceans 124, 4631–4643 (2019).


Google Scholar
 

Ryan, S., Schröder, M., Huhn, O. & Timmermann, R. On the warm inflow at the eastern boundary of the Weddell Gyre. Deep Sea Res. Part I: Oceanographic Res. Pap. 107, 70–81 (2016).


Google Scholar
 

Schröder, M. & Fahrbach, E. On the structure and the transport of the eastern Weddell Gyre. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 501–527 (1999).


Google Scholar
 

Gupta, M., Marshall, J., Song, H., Campin, J. -M. & Meneghello, G. Sea-Ice Melt Driven by Ice-Ocean Stresses on the Mesoscale. J. Geophys. Res.: Oceans 125, e2020JC016404 (2020).


Google Scholar
 

Horvat, C., Tziperman, E. & Campin, J. -M. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophys. Res. Lett. 43, 8083–8090 (2016).


Google Scholar
 

Martínez-Moreno, J., Lique, C. & Talandier, C. Sea ice heterogeneity as a result of ocean eddy activity during the ice growth season.

Nøst, O. A. et al. Eddy overturning of the Antarctic Slope Front controls glacial melting in the Eastern Weddell Sea. J. Geophys. Res.: Oceans 116, C11014 (2011).

Stewart, A. L., Klocker, A. & Menemenlis, D. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation. Geophys. Res. Lett. 45, 834–845 (2018).


Google Scholar
 

Stewart, A. L. & Thompson, A. F. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett. 42, 432–440 (2015).


Google Scholar
 

Friedrichs, D. M. et al. Observations of submesoscale eddy-driven heat transport at an ice shelf calving front. Commun. Earth Environ. 3, 1–9 (2022).


Google Scholar
 

Auger, M., Prandi, P. & Sallée, J. -B. Southern ocean sea level anomaly in the sea ice-covered sector from multimission satellite observations. Sci. Data 9, 70 (2022).


Google Scholar
 

Auger, M., Sallée, J. -B., Thompson, A. F., Pauthenet, E. & Prandi, P. Southern Ocean Ice-Covered Eddy Properties From Satellite Altimetry. J. Geophys. Res.: Oceans 128, e2022JC019363 (2023).


Google Scholar
 

Frenger, I., Münnich, M., Gruber, N. & Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res.: Oceans 120, 7413–7449 (2015).


Google Scholar
 

Li, X. et al. Eddy activity in the Arctic Ocean projected to surge in a warming world. Nat. Clim. Chang. 1–7 https://doi.org/10.1038/s41558-023-01908-w (2024).

Petersen, M. R., Williams, S. J., Maltrud, M. E., Hecht, M. W. & Hamann, B. A three-dimensional eddy census of a high-resolution global ocean simulation. J. Geophys. Res.: Oceans 118, 1759–1774 (2013).


Google Scholar
 

Lu, K. et al. Lateral mixing across ice meltwater fronts of the Chukchi Sea shelf. Geophys. Res. Lett. 42, 6754–6761 (2015).


Google Scholar
 

Timmermans, M.-L., Cole, S. & Toole, J. Horizontal Density Structure and Restratification of the Arctic Ocean Surface Layer. https://doi.org/10.1175/JPO-D-11-0125.1 (2012).

Cassianides, A., Lique, C. & Korosov, A. Ocean Eddy Signature on SAR-Derived Sea Ice Drift and Vorticity. Geophys. Res. Lett. 48, e2020GL092066 (2021).


Google Scholar
 

Manley, T. O. & Hunkins, K. Mesoscale eddies of the Arctic Ocean. J. Geophys. Res.: Oceans 90, 4911–4930 (1985).


Google Scholar
 

Morozov, E. G. et al. Mesoscale Variability of the Ocean in the Northern Part of the Weddell Sea. Oceanology 60, 573–588 (2020).


Google Scholar
 

Sallée, J.-B. et al. Subsurface floats in the Filchner Trough provide first direct under-ice tracks of eddies and circulation on shelf. EGUsphere 1–27. https://doi.org/10.5194/egusphere-2023-2952 (2023).

Timmermans, M. -L., Toole, J., Proshutinsky, A., Krishfield, R. & Plueddemann, A. Eddies in the Canada Basin, Arctic Ocean, Observed from Ice-Tethered Profilers. J. Phys. Oceanogr. 38, 133–145 (2008).


Google Scholar
 

Zhao, M. et al. Characterizing the eddy field in the Arctic Ocean halocline. J. Geophys. Res.: Oceans 119, 8800–8817 (2014).


Google Scholar
 

Zhao, M., Timmermans, M. -L., Cole, S., Krishfield, R. & Toole, J. Evolution of the eddy field in the Arctic Ocean’s Canada Basin, 2005–2015. Geophys. Res. Lett. 43, 8106–8114 (2016).


Google Scholar
 

Huot, P. -V., Kittel, C., Fichefet, T., Jourdain, N. C. & Fettweis, X. Effects of ocean mesoscale eddies on atmosphere–sea ice–ocean interactions off Adélie Land, East Antarctica. Clim. Dyn. 59, 41–60 (2022).


Google Scholar
 

Graham, J. A., Dinniman, M. S. & Klinck, J. M. Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula. J. Geophys. Res.: Oceans 121, 7880–7897 (2016).


Google Scholar
 

Robertson, R. Baroclinic and barotropic tides in the Weddell Sea. Antartic Sci. 17, 461–474 (2005).


Google Scholar
 

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Dev. 9, 1937–1958 (2016).


Google Scholar
 

Luo, F., Ying, J., Liu, T. & Chen, D. Origins of Southern Ocean warm sea surface temperature bias in CMIP6 models. npj Clim. Atmos. Sci. 6, 1–8 (2023).


Google Scholar
 

Wang, C., Zhang, L., Lee, S. -K., Wu, L. & Mechoso, C. R. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 4, 201–205 (2014).


Google Scholar
 

Danilov, S., Sidorenko, D., Wang, Q. & Jung, T. The Finite-volumE Sea ice–Ocean Model (FESOM2). Geoscientific Model Dev. 10, 765–789 (2017).


Google Scholar
 

Scholz, P. et al. Assessment of the Finite-volumE Sea ice-Ocean Model (FESOM2.0) – Part 1: Description of selected key model elements and comparison to its predecessor version. Geoscientific Model Dev. 12, 4875–4899 (2019).


Google Scholar
 

Scholz, P. et al. Assessment of the Finite-VolumE Sea ice–Ocean Model (FESOM2.0) – Part 2: Partial bottom cells, embedded sea ice and vertical mixing library CVMix. Geoscientific Model Dev. 15, 335–363 (2022).


Google Scholar
 

Akitomo, K. Thermobaric deep convection, baroclinic instability, and their roles in vertical heat transport around Maud Rise in the Weddell Sea. J. Geophys. Res.: Oceans 111, C09027 (2006).

Holland, D. M. Explaining the Weddell Polynya-a Large Ocean Eddy Shed at Maud Rise. Science 292, 1697–1700 (2001).

CAS 

Google Scholar
 

Muench, R. D. et al. Maud Rise revisited. J. Geophys. Res.: Oceans 106, 2423–2440 (2001).


Google Scholar
 

Constantinou, N. C. & Hogg, A. McC. Eddy Saturation of the Southern Ocean: A Baroclinic Versus Barotropic Perspective. Geophys. Res. Lett. 46, 12202–12212 (2019).


Google Scholar
 

Marshall, G. J. Trends in the Southern Annular Mode from Observations and Reanalyses. J. Clim. 16, 4134–4143 (2003).


Google Scholar
 

Munday, D. R., Johnson, H. L. & Marshall, D. P. Eddy Saturation of Equilibrated Circumpolar Currents. J. Phys. Oceanogr. 43, 507–532 (2013).


Google Scholar
 

Yamazaki, K., Aoki, S., Katsumata, K., Hirano, D. & Nakayama, Y. Multidecadal poleward shift of the southern boundary of the Antarctic Circumpolar Current off East Antarctica. Sci. Adv. 7, eabf8755 (2021).


Google Scholar
 

Müller, V., et al. Variability of Eddy Kinetic Energy in the Eurasian Basin of the Arctic Ocean Inferred From a Model Simulation at 1-km Resolution. J. Geophys. Res.: Oceans 129, e2023JC020139 (2024).


Google Scholar
 

Tulloch, R., Marshall, J., Hill, C. & Smith, K. S. Scales, Growth Rates, and Spectral Fluxes of Baroclinic Instability in the Ocean. https://doi.org/10.1175/2011JPO4404.1 (2011).

Vollmer, L. & Eden, C. A global map of meso-scale eddy diffusivities based on linear stability analysis. Ocean Model. 72, 198–209 (2013).


Google Scholar
 

Beadling, R. L. et al. Importance of the Antarctic Slope Current in the Southern Ocean Response to Ice Sheet Melt and Wind Stress Change. J. Geophys. Res.: Oceans 127, (2022). e2021JC017608.


Google Scholar
 

Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 1–9 (2023).


Google Scholar
 

Orsi, A. H., Nowlin, W. D. & Whitworth, T. On the circulation and stratification of the Weddell Gyre. Deep Sea Res. Part I: Oceanographic Res. Pap. 40, 169–203 (1993).


Google Scholar
 

Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

CAS 

Google Scholar
 

Giddy, I., Swart, S., du Plessis, M., Thompson, A. F. & Nicholson, S. -A. Stirring of Sea-Ice Meltwater Enhances Submesoscale Fronts in the Southern Ocean. J. Geophys. Res.: Oceans 126, e2020JC016814 (2021).


Google Scholar
 

Meneghello, G. et al. Genesis and Decay of Mesoscale Baroclinic Eddies in the Seasonally Ice-Covered Interior Arctic Ocean. J. Phys. Oceanogr. 51, 115–129 (2020).


Google Scholar
 

Eayrs, C. et al. Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context of Longer-Term Variability. Rev. Geophysics 57, 1037–1064 (2019).


Google Scholar
 

Gordon, A. L. Seasonality of Southern Ocean sea ice. J. Geophys. Res.: Oceans 86, 4193–4197 (1981).


Google Scholar
 

Vichi, M. An indicator of sea ice variability for the Antarctic marginal ice zone. Cryosphere 16, 4087–4106 (2022).


Google Scholar
 

Toole, J. M., Krishfield, R. A., Timmermans, M. -L. & Proshutinsky, A. The Ice-Tethered Profiler: Argo of the Arctic. Oceanography 24, 126–135 (2011).


Google Scholar
 

Mahadevan, A., Thomas, L. & Tandon, A. Comment on “Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms”. Sci. (N. Y., N. Y.) 320, 448 (2008). author reply 448.

CAS 

Google Scholar
 

McGillicuddy, D. J. et al. Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. Science 316, 1021–1026 (2007).

CAS 

Google Scholar
 

Wang, Q. et al. The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geoscientific Model Dev. 7, 663–693 (2014).

CAS 

Google Scholar
 

Danilov, S. et al. FESOM2.5_SO3. Zenodo https://doi.org/10.5281/zenodo.10476072 (2024).

Danilov, S. et al. Finite-Element Sea Ice Model (FESIM), version 2. Geoscientific Model Dev. 8, 1747–1761 (2015).


Google Scholar
 

Semmler, T. et al. Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1. J. Adv. Modeling Earth Syst. 12, e2019MS002009 (2020).


Google Scholar
 

O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Dev. 9, 3461–3482 (2016).


Google Scholar
 

Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).


Google Scholar
 

Danilov, S. On the Resolution of Triangular Meshes. J. Adv. Modeling Earth Syst. 14, e2022MS003177 (2022).


Google Scholar
 

Taburet, G. et al. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci. 15, 1207–1224 (2019).


Google Scholar
 

Gong, D. & Wang, S. Definition of Antarctic Oscillation index. Geophys. Res. Lett. 26, 459–462 (1999).


Google Scholar
 

Mazloff, M. R., Heimbach, P. & Wunsch, C. An Eddy-Permitting Southern Ocean State Estimate. J. Phys. Oceanogr. 40, 880–899 (2010).


Google Scholar
 

Reagan, J. R. et al. World Ocean Atlas. (2023).

Meier, W. N., Fetterer, F., Windnagel, A. K. & Stewart, S. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. https://doi.org/10.7265/efmz-2t65 (2021).

Casagrande, F., Stachelski, L. & Souza, R. Assessment of Antarctic sea ice area and concentration in Coupled Model Intercomparison Project Phase 5 and Phase 6 models. Int. J. Climatol. 43, 1–19 (2023).


Google Scholar
 

Zhang, Q., Liu, B., Li, S. & Zhou, T. Understanding Models’ Global Sea Surface Temperature Bias in Mean State: From CMIP5 to CMIP6. Geophys. Res. Lett. 50, e2022GL100888 (2023).


Google Scholar
 

Danilov, S., Juricke, S., Nowak, K., Sidorenko, D. & Wang, Q. Extracting Spatial Spectra Using Coarse-Graining Based on Implicit Filters. https://essopenarchive.org/users/523608/articles/656728-extracting-spatial-spectra-using-coarse-graining-based-on-implicit-filters?commit=52a394853a28aa985d8365d06d26bcb5325f6b48https://doi.org/10.22541/essoar.169111691.14930425/v1 (2023).

Okubo, A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanographic Abstr. 17, 445–454 (1970).


Google Scholar
 

Weiss, J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys. D: Nonlinear Phenom. 48, 273–294 (1991).


Google Scholar
 

Stewart, A. L., Klocker, A. & Menemenlis, D. Acceleration and Overturning of the Antarctic Slope Current by Winds, Eddies, and Tides. J. Phys. Oceanogr. 49, 2043–2074 (2019).


Google Scholar
 

Fleiss, J. L., Levin, B. & Paik, M. C. Statistical Methods for Rates and Proportions. (John Wiley & Sons, 2013).

Welch, B. L. The Generalization of ‘Student’s’ Problem when Several Different Population Variances are Involved. Biometrika 34, 28–35 (1947).

CAS 

Google Scholar
 

Beech, N. Initial conditions used in FESOM2 simulations for Beech et al. (2025). Zenodo https://doi.org/10.5281/zenodo.14975627 (2025).

Koldunov, N. V. & Harig, S. FESOM2 meshes: SO3. Zenodo https://doi.org/10.5281/zenodo.14910006 (2025).

DiGirolamo, N., Parkinson, C. L., Cavalieri, D. J., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 2. NASA National Snow and Ice Data Center Distributed Active Archive Center https://doi.org/10.5067/MPYG15WAA4WX (2022).

Reagan, J. R. et al. World Ocean Atlas 2023. NOAA National Centers for Environmental Information (2024).

Beech, N. n-beech/SO3_Antarctic_eddies: Re-release for zenodo. Zenodo https://doi.org/10.5281/zenodo.14975969 (2025).