Chassignet, E. P. et al. Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Dev. 13, 4595–4637 (2020).
Chassignet, E. P. & Xu, X. On the Importance of High-Resolution in Large-Scale Ocean Models. Adv. Atmos. Sci. 38, 1621–1634 (2021).
Frenger, I., Gruber, N., Knutti, R. & Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 6, 608–612 (2013).
Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G. & O’Neill, L. W. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping. J. Phys. Oceanogr. 45, 104–132 (2015).
Griffies, S. M. et al. Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models. J. Clim. 28, 952–977 (2015).
Rackow, T. et al. Delayed Antarctic sea-ice decline in high-resolution climate change simulations. Nat. Commun. 13, 637 (2022).
Amores, A., Jordà, G., Arsouze, T. & Le Sommer, J. Up to What Extent Can We Characterize Ocean Eddies Using Present-Day Gridded Altimetric Products?. J. Geophys. Res.: Oceans 123, 7220–7236 (2018).
Ballarotta, M. et al. On the resolutions of ocean altimetry maps. Ocean Sci. 15, 1091–1109 (2019).
Hallberg, R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model. 72, 92–103 (2013).
Sein, D. V. et al. Ocean Modeling on a Mesh With Resolution Following the Local Rossby Radius. J. Adv. Modeling Earth Syst. 9, 2601–2614 (2017).
Bian, C. et al. Oceanic mesoscale eddies as crucial drivers of global marine heatwaves. Nat. Commun. 14, 2970 (2023).
Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).
Frey, D. I., Morozov, E. G. & Smirnova, D. A. Sea level anomalies affect the ocean circulation at abyssal depths. Sci. Rep. 13, 20829 (2023).
Pauling, A. G., Smith, I. J., Langhorne, P. J. & Bitz, C. M. Time-Dependent Freshwater Input From Ice Shelves: Impacts on Antarctic Sea Ice and the Southern Ocean in an Earth System Model. Geophys. Res. Lett. 44, 10,454–10,461 (2017).
Thompson, A. F., Heywood, K. J., Schmidtko, S. & Stewart, A. L. Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci. 7, 879–884 (2014).
van Westen, R. M. & Dijkstra, H. A. Ocean eddies strongly affect global mean sea-level projections. Sci. Adv. 7, eabf1674 (2021).
Beech, N. et al. Long-term evolution of ocean eddy activity in a warming world. Nat. Clim. Chang. 12, 910–917 (2022).
Beech, N., Rackow, T., Semmler, T. & Jung, T. Exploring the ocean mesoscale at reduced computational cost with FESOM 2.5: efficient modeling strategies applied to the Southern Ocean. Geoscientific Model Dev. 17, 529–543 (2024).
Johnson, G. C. Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res.: Oceans 113, C05027 (2008).
Orsi, A. H., Johnson, G. C. & Bullister, J. L. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 43, 55–109 (1999).
Frey, W. R., Morrison, A. L., Kay, J. E., Guzman, R. & Chepfer, H. The Combined Influence of Observed Southern Ocean Clouds and Sea Ice on Top-of-Atmosphere Albedo. J. Geophys. Res.: Atmospheres 123, 4461–4475 (2018).
Haumann, F. A., Gruber, N., Münnich, M., Frenger, I. & Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537, 89–92 (2016).
Colman, R. A comparison of climate feedbacks in general circulation models. Clim. Dyn. 20, 865–873 (2003).
Roach, C. J. & Speer, K. Exchange of Water Between the Ross Gyre and ACC Assessed by Lagrangian Particle Tracking. J. Geophys. Res.: Oceans 124, 4631–4643 (2019).
Ryan, S., Schröder, M., Huhn, O. & Timmermann, R. On the warm inflow at the eastern boundary of the Weddell Gyre. Deep Sea Res. Part I: Oceanographic Res. Pap. 107, 70–81 (2016).
Schröder, M. & Fahrbach, E. On the structure and the transport of the eastern Weddell Gyre. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 501–527 (1999).
Gupta, M., Marshall, J., Song, H., Campin, J. -M. & Meneghello, G. Sea-Ice Melt Driven by Ice-Ocean Stresses on the Mesoscale. J. Geophys. Res.: Oceans 125, e2020JC016404 (2020).
Horvat, C., Tziperman, E. & Campin, J. -M. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophys. Res. Lett. 43, 8083–8090 (2016).
Martínez-Moreno, J., Lique, C. & Talandier, C. Sea ice heterogeneity as a result of ocean eddy activity during the ice growth season.
Nøst, O. A. et al. Eddy overturning of the Antarctic Slope Front controls glacial melting in the Eastern Weddell Sea. J. Geophys. Res.: Oceans 116, C11014 (2011).
Stewart, A. L., Klocker, A. & Menemenlis, D. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation. Geophys. Res. Lett. 45, 834–845 (2018).
Stewart, A. L. & Thompson, A. F. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett. 42, 432–440 (2015).
Friedrichs, D. M. et al. Observations of submesoscale eddy-driven heat transport at an ice shelf calving front. Commun. Earth Environ. 3, 1–9 (2022).
Auger, M., Prandi, P. & Sallée, J. -B. Southern ocean sea level anomaly in the sea ice-covered sector from multimission satellite observations. Sci. Data 9, 70 (2022).
Auger, M., Sallée, J. -B., Thompson, A. F., Pauthenet, E. & Prandi, P. Southern Ocean Ice-Covered Eddy Properties From Satellite Altimetry. J. Geophys. Res.: Oceans 128, e2022JC019363 (2023).
Frenger, I., Münnich, M., Gruber, N. & Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res.: Oceans 120, 7413–7449 (2015).
Li, X. et al. Eddy activity in the Arctic Ocean projected to surge in a warming world. Nat. Clim. Chang. 1–7 https://doi.org/10.1038/s41558-023-01908-w (2024).
Petersen, M. R., Williams, S. J., Maltrud, M. E., Hecht, M. W. & Hamann, B. A three-dimensional eddy census of a high-resolution global ocean simulation. J. Geophys. Res.: Oceans 118, 1759–1774 (2013).
Lu, K. et al. Lateral mixing across ice meltwater fronts of the Chukchi Sea shelf. Geophys. Res. Lett. 42, 6754–6761 (2015).
Timmermans, M.-L., Cole, S. & Toole, J. Horizontal Density Structure and Restratification of the Arctic Ocean Surface Layer. https://doi.org/10.1175/JPO-D-11-0125.1 (2012).
Cassianides, A., Lique, C. & Korosov, A. Ocean Eddy Signature on SAR-Derived Sea Ice Drift and Vorticity. Geophys. Res. Lett. 48, e2020GL092066 (2021).
Manley, T. O. & Hunkins, K. Mesoscale eddies of the Arctic Ocean. J. Geophys. Res.: Oceans 90, 4911–4930 (1985).
Morozov, E. G. et al. Mesoscale Variability of the Ocean in the Northern Part of the Weddell Sea. Oceanology 60, 573–588 (2020).
Sallée, J.-B. et al. Subsurface floats in the Filchner Trough provide first direct under-ice tracks of eddies and circulation on shelf. EGUsphere 1–27. https://doi.org/10.5194/egusphere-2023-2952 (2023).
Timmermans, M. -L., Toole, J., Proshutinsky, A., Krishfield, R. & Plueddemann, A. Eddies in the Canada Basin, Arctic Ocean, Observed from Ice-Tethered Profilers. J. Phys. Oceanogr. 38, 133–145 (2008).
Zhao, M. et al. Characterizing the eddy field in the Arctic Ocean halocline. J. Geophys. Res.: Oceans 119, 8800–8817 (2014).
Zhao, M., Timmermans, M. -L., Cole, S., Krishfield, R. & Toole, J. Evolution of the eddy field in the Arctic Ocean’s Canada Basin, 2005–2015. Geophys. Res. Lett. 43, 8106–8114 (2016).
Huot, P. -V., Kittel, C., Fichefet, T., Jourdain, N. C. & Fettweis, X. Effects of ocean mesoscale eddies on atmosphere–sea ice–ocean interactions off Adélie Land, East Antarctica. Clim. Dyn. 59, 41–60 (2022).
Graham, J. A., Dinniman, M. S. & Klinck, J. M. Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula. J. Geophys. Res.: Oceans 121, 7880–7897 (2016).
Robertson, R. Baroclinic and barotropic tides in the Weddell Sea. Antartic Sci. 17, 461–474 (2005).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Dev. 9, 1937–1958 (2016).
Luo, F., Ying, J., Liu, T. & Chen, D. Origins of Southern Ocean warm sea surface temperature bias in CMIP6 models. npj Clim. Atmos. Sci. 6, 1–8 (2023).
Wang, C., Zhang, L., Lee, S. -K., Wu, L. & Mechoso, C. R. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 4, 201–205 (2014).
Danilov, S., Sidorenko, D., Wang, Q. & Jung, T. The Finite-volumE Sea ice–Ocean Model (FESOM2). Geoscientific Model Dev. 10, 765–789 (2017).
Scholz, P. et al. Assessment of the Finite-volumE Sea ice-Ocean Model (FESOM2.0) – Part 1: Description of selected key model elements and comparison to its predecessor version. Geoscientific Model Dev. 12, 4875–4899 (2019).
Scholz, P. et al. Assessment of the Finite-VolumE Sea ice–Ocean Model (FESOM2.0) – Part 2: Partial bottom cells, embedded sea ice and vertical mixing library CVMix. Geoscientific Model Dev. 15, 335–363 (2022).
Akitomo, K. Thermobaric deep convection, baroclinic instability, and their roles in vertical heat transport around Maud Rise in the Weddell Sea. J. Geophys. Res.: Oceans 111, C09027 (2006).
Holland, D. M. Explaining the Weddell Polynya-a Large Ocean Eddy Shed at Maud Rise. Science 292, 1697–1700 (2001).
Muench, R. D. et al. Maud Rise revisited. J. Geophys. Res.: Oceans 106, 2423–2440 (2001).
Constantinou, N. C. & Hogg, A. McC. Eddy Saturation of the Southern Ocean: A Baroclinic Versus Barotropic Perspective. Geophys. Res. Lett. 46, 12202–12212 (2019).
Marshall, G. J. Trends in the Southern Annular Mode from Observations and Reanalyses. J. Clim. 16, 4134–4143 (2003).
Munday, D. R., Johnson, H. L. & Marshall, D. P. Eddy Saturation of Equilibrated Circumpolar Currents. J. Phys. Oceanogr. 43, 507–532 (2013).
Yamazaki, K., Aoki, S., Katsumata, K., Hirano, D. & Nakayama, Y. Multidecadal poleward shift of the southern boundary of the Antarctic Circumpolar Current off East Antarctica. Sci. Adv. 7, eabf8755 (2021).
Müller, V., et al. Variability of Eddy Kinetic Energy in the Eurasian Basin of the Arctic Ocean Inferred From a Model Simulation at 1-km Resolution. J. Geophys. Res.: Oceans 129, e2023JC020139 (2024).
Tulloch, R., Marshall, J., Hill, C. & Smith, K. S. Scales, Growth Rates, and Spectral Fluxes of Baroclinic Instability in the Ocean. https://doi.org/10.1175/2011JPO4404.1 (2011).
Vollmer, L. & Eden, C. A global map of meso-scale eddy diffusivities based on linear stability analysis. Ocean Model. 72, 198–209 (2013).
Beadling, R. L. et al. Importance of the Antarctic Slope Current in the Southern Ocean Response to Ice Sheet Melt and Wind Stress Change. J. Geophys. Res.: Oceans 127, (2022). e2021JC017608.
Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 1–9 (2023).
Orsi, A. H., Nowlin, W. D. & Whitworth, T. On the circulation and stratification of the Weddell Gyre. Deep Sea Res. Part I: Oceanographic Res. Pap. 40, 169–203 (1993).
Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).
Giddy, I., Swart, S., du Plessis, M., Thompson, A. F. & Nicholson, S. -A. Stirring of Sea-Ice Meltwater Enhances Submesoscale Fronts in the Southern Ocean. J. Geophys. Res.: Oceans 126, e2020JC016814 (2021).
Meneghello, G. et al. Genesis and Decay of Mesoscale Baroclinic Eddies in the Seasonally Ice-Covered Interior Arctic Ocean. J. Phys. Oceanogr. 51, 115–129 (2020).
Eayrs, C. et al. Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context of Longer-Term Variability. Rev. Geophysics 57, 1037–1064 (2019).
Gordon, A. L. Seasonality of Southern Ocean sea ice. J. Geophys. Res.: Oceans 86, 4193–4197 (1981).
Vichi, M. An indicator of sea ice variability for the Antarctic marginal ice zone. Cryosphere 16, 4087–4106 (2022).
Toole, J. M., Krishfield, R. A., Timmermans, M. -L. & Proshutinsky, A. The Ice-Tethered Profiler: Argo of the Arctic. Oceanography 24, 126–135 (2011).
Mahadevan, A., Thomas, L. & Tandon, A. Comment on “Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms”. Sci. (N. Y., N. Y.) 320, 448 (2008). author reply 448.
McGillicuddy, D. J. et al. Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. Science 316, 1021–1026 (2007).
Wang, Q. et al. The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geoscientific Model Dev. 7, 663–693 (2014).
Danilov, S. et al. FESOM2.5_SO3. Zenodo https://doi.org/10.5281/zenodo.10476072 (2024).
Danilov, S. et al. Finite-Element Sea Ice Model (FESIM), version 2. Geoscientific Model Dev. 8, 1747–1761 (2015).
Semmler, T. et al. Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1. J. Adv. Modeling Earth Syst. 12, e2019MS002009 (2020).
O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Dev. 9, 3461–3482 (2016).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).
Danilov, S. On the Resolution of Triangular Meshes. J. Adv. Modeling Earth Syst. 14, e2022MS003177 (2022).
Taburet, G. et al. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci. 15, 1207–1224 (2019).
Gong, D. & Wang, S. Definition of Antarctic Oscillation index. Geophys. Res. Lett. 26, 459–462 (1999).
Mazloff, M. R., Heimbach, P. & Wunsch, C. An Eddy-Permitting Southern Ocean State Estimate. J. Phys. Oceanogr. 40, 880–899 (2010).
Reagan, J. R. et al. World Ocean Atlas. (2023).
Meier, W. N., Fetterer, F., Windnagel, A. K. & Stewart, S. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. https://doi.org/10.7265/efmz-2t65 (2021).
Casagrande, F., Stachelski, L. & Souza, R. Assessment of Antarctic sea ice area and concentration in Coupled Model Intercomparison Project Phase 5 and Phase 6 models. Int. J. Climatol. 43, 1–19 (2023).
Zhang, Q., Liu, B., Li, S. & Zhou, T. Understanding Models’ Global Sea Surface Temperature Bias in Mean State: From CMIP5 to CMIP6. Geophys. Res. Lett. 50, e2022GL100888 (2023).
Danilov, S., Juricke, S., Nowak, K., Sidorenko, D. & Wang, Q. Extracting Spatial Spectra Using Coarse-Graining Based on Implicit Filters. https://essopenarchive.org/users/523608/articles/656728-extracting-spatial-spectra-using-coarse-graining-based-on-implicit-filters?commit=52a394853a28aa985d8365d06d26bcb5325f6b48https://doi.org/10.22541/essoar.169111691.14930425/v1 (2023).
Okubo, A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanographic Abstr. 17, 445–454 (1970).
Weiss, J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys. D: Nonlinear Phenom. 48, 273–294 (1991).
Stewart, A. L., Klocker, A. & Menemenlis, D. Acceleration and Overturning of the Antarctic Slope Current by Winds, Eddies, and Tides. J. Phys. Oceanogr. 49, 2043–2074 (2019).
Fleiss, J. L., Levin, B. & Paik, M. C. Statistical Methods for Rates and Proportions. (John Wiley & Sons, 2013).
Welch, B. L. The Generalization of ‘Student’s’ Problem when Several Different Population Variances are Involved. Biometrika 34, 28–35 (1947).
Beech, N. Initial conditions used in FESOM2 simulations for Beech et al. (2025). Zenodo https://doi.org/10.5281/zenodo.14975627 (2025).
Koldunov, N. V. & Harig, S. FESOM2 meshes: SO3. Zenodo https://doi.org/10.5281/zenodo.14910006 (2025).
DiGirolamo, N., Parkinson, C. L., Cavalieri, D. J., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 2. NASA National Snow and Ice Data Center Distributed Active Archive Center https://doi.org/10.5067/MPYG15WAA4WX (2022).
Reagan, J. R. et al. World Ocean Atlas 2023. NOAA National Centers for Environmental Information (2024).
Beech, N. n-beech/SO3_Antarctic_eddies: Re-release for zenodo. Zenodo https://doi.org/10.5281/zenodo.14975969 (2025).