IPCC. Sections. In Climate 900 Change 2023: Synthesis Report. Contribution of 901 Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental 902 Panel on Climate Change (eds Core Writing Team, Lee, H. and Romero, J.), 35–115. https://doi.org/10.59327/IPCC/AR6-9789291691647 (IPCC, 2023).
Ollerton, J. Pollinators and Pollination: Nature and Society (Pelagic Publishing Ltd, 2021).
Carroll, A. B., Pallardy, S. G. & Galen, C. Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). Am. J. Bot. 88 (3), 438–446. https://doi.org/10.2307/2657108 (2001).
Gallagher, M. K. & Campbell, D. R. Shifts in water availability mediate plant–pollinator interactions. New Phytol. 215 (2), 792–802. https://doi.org/10.1111/nph.14602 (2017).
Lauder, J. D., Moran, E. V. & Hart, S. C. Fight or flight? Potential tradeoffs between drought defense and reproduction in conifers. Tree Physiol. 39 (7), 1071–1085. https://doi.org/10.1093/treephys/tpz031 (2019).
Lemoine, R. et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272. https://doi.org/10.3389/fpls.2013.00272 (2013).
Burkle, L. A. & Runyon, J. B. Drought and leaf herbivory influence floral volatiles and pollinator attraction. Glob. Change Biol. 22 (4), 1644–1654. https://doi.org/10.1111/gcb.13149 (2016).
Descamps, C., Quinet, M., Baijot, A. & Jacquemart, A. L. Temperature and water stress affect plant–pollinator interactions in Borago officinalis (Boraginaceae). Ecol. Evol. 8 (6), 3443–3456. https://doi.org/10.1002/ece3.3914 (2018).
Glenny, W. R., Runyon, J. B. & Burkle, L. A. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation. New Phytol. 220 (3), 785–798. https://doi.org/10.1111/nph.15081 (2018).
Phillips, B. B. et al. Drought reduces floral resources for pollinators. Glob. Change Biol. 24 (7), 3226–3235. https://doi.org/10.1111/gcb.14130 (2018).
Walter, J. Dryness, wetness and temporary flooding reduce floral resources of plant communities with adverse consequences for pollinator attraction. J. Ecol. 108 (4), 1453–1464. https://doi.org/10.1111/1365-2745.13364 (2020).
Wyatt, R., Broyles, S. B. & Derda, G. S. Environmental influences on nectar production in milkweeds (Asclepia Syriaca and A. exaltata). Am. J. Bot. 79 (6), 636–642. https://doi.org/10.1002/j.1537-2197.1992.tb14605.x (1992).
Takkis, K., Tscheulin, T., Tsalkatis, P. & Petanidou, T. Climate change reduces nectar secretion in two common mediterranean plants. AoB Plants 7, 111. https://doi.org/10.1093/aobpla/plv111 (2015).
Descamps, C., Quinet, M. & Jacquemart, A. L. Climate change-induced stress reduce quantity and alter composition of nectar and pollen from a bee-pollinated species (Borago officinalis, Boraginaceae). Front. Plant Sci. 12, 755843. https://doi.org/10.3389/fpls.2021.755843 (2021).
Nicolson, S. W., Nepi, M. & Pacini, E. Nectaries and Nectar (Springer, 2007).
Eisikowitch, D. & Woodell, S. R. J. Some aspects of pollination ecology of Armeria maritima (Mill.) Willd. in Britain. New. Phytol. 74 (2), 307–322. https://doi.org/10.1111/j.1469-8137.1975.tb02619.x (1975).
Cnaani, J., Thomson, J. D. & Papaj, D. R. Flower choice and learning in foraging bumblebees: Effects of variation in nectar volume and concentration. Ethology 112 (3), 278–285. https://doi.org/10.1111/j.1439-0310.2006.01174.x (2006).
Dicks, L. V. et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5 (10), 1453–1461. https://doi.org/10.1038/s41559-021-01534-9 (2021).
Galetto, L. et al. Risks and opportunities associated with pollinators’ conservation and management of pollination services in Latin America. Ecol. Austral. 32 (1), 55–76. https://doi.org/10.25260/EA.22.32.1.0.1790 (2022).
Giannini, T. C. et al. Projected climate change threatens pollinators and crop production in Brazil. PLoS One. 12, e0182274. https://doi.org/10.1371/journal.pone.0182274 (2017).
Giannini, T. C., Cordeiro, G. D., Freitas, B. M., Saraiva, A. M. & Imperatriz-Fonseca, V. L. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108 (3), 849–857. https://doi.org/10.1093/jee/tov093 (2015).
Passarelli, L. Importancia de apis mellifera L. en La producción de cucurbita maxima Duch. (Zapallito de tronco). Investig. Agrar. Prod. Prot. Veg. 17 (1), 5–14 (2002).
Hurd, P. D. & Linsley, E. G. A Classification of the Squash and Gourd Bees Peponapis and Xenoglossa 1–39 (University of California Press, 1970).
Ashworth, L. & Galetto, L. Pollinators and reproductive success of the wild cucurbit Cucurbita maxima ssp. Andreana (Cucurbitaceae). Plant Biol. 3 (4), 398–404. https://doi.org/10.1055/s-2001-16451 (2001).
Mazzei, M. P., Vesprini, J. L. & Galetto, L. Visitantes florales no Polinizadores En Plantas Del Género Cucurbita y Su relación Con La presencia de Abejas polinizadoras. Acta Agron. 69 (4), 256–265. https://doi.org/10.15446/acag.v69n4.87639 (2020).
Ashworth, L. & Galetto, L. Differential nectar production between male and female flowers in a wild cucurbit: Cucurbita maxima Ssp. Andreana (Cucurbitaceae). Can. J. Bot. 80 (11), 1203–1208. https://doi.org/10.1139/b02-110 (2002).
Barman, M., Tenhaken, R. & Dötterl, S. Negative and sex-specific effects of drought on flower production, resources and pollinator visitation, but not on floral scent in monoecious Cucurbita Pepo. New Phytol. 244, 1013–1023. https://doi.org/10.1111/nph.20016 (2024).
Nepi, M., Guarnieri, M. & Pacini, E. Nectar secretion, reabsorption and sugar composition in male and female flowers of Cucurbita Pepo. Int. J. Plant Sci. 162 (2), 353–358. https://doi.org/10.1086/319581 (2001).
Nikolova, T., Yordanova, M. & Petrova, V. Influence of meteorological conditions on the production of nectar and pollen of Cucurbita Pepo Var. Giromontia. Bulg. J. Agric. Sci. 25 (2), 310–313 (2019).
Krimer-Malešević, V., Mađarev-Popović, S., Vaštag, Ž., Radulović, L. & Peričin, D. Phenolic acids in pumpkin (Cucurbita Pepo L.) seeds. In Nuts and Seeds in Health and Disease Prevention (eds Preedy, V. R., Watson, R. R. & Patel, V. B.) 925–932 (Academic, 2011).
FAO. Global Statistical Yearbook (2021). http://www.fao.org/faostat/en/#data/QCL. Accessed 17 June 2022.
Filgueira, F. A. R. Novo Manual De Olericultura 421 (Editora UFV, 2003).
IBGE—Instituto Brasileiro De Geografia e Estatística. Censo Agropecuário 2017. Valor da produção, Quantidade produzida, Estabelecimentos, Maior produtor (2017). https://www.ibge.gov.br/explica/producao-agropecuaria/abobrinha/br. Accessed 17 June 2022.
Kuppler, J. & Kotowska, M. M. A meta-analysis of responses in floral traits and flower–visitor interactions to water deficit. Glob. Change Biol. 27 (13), 3095–3108. https://doi.org/10.1111/gcb.15621 (2021).
Blumwald, E. & Mittler, R. Estresse abiótico. In Fisiologia E Desenvolvimento Vegetal (ed Taiz, L.) 731–759 (Editora Artmed, (2017).
Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. 123 (2), 247–261. https://doi.org/10.1093/aob/mcy132 (2019).
Bertsch, A. Nectar production of Epilobium angustifolium L. at different air humidities; nectar sugar in individual flowers and the optimal foraging theory. Oecologia 59, 40–48. https://doi.org/10.1007/BF00388069 (1983).
Baude, M. et al. Litter inputs and plant interactions affect nectar sugar content: Plant interactions and nectar content. J. Ecol. 99 (3), 828–837. https://doi.org/10.1111/j.1365-2745.2011.01793.x (2011).
Rusterholz, H. & Erhardt, A. Effects of elevated CO₂ on flowering phenology and nectar production of nectar plants important for butterflies of calcareous grasslands. Oecologia 113, 341–349. https://doi.org/10.1007/s004420050385 (1998).
Corbet, S. Nectar sugar content: Estimating standing crop and secretion rate in the field. Apidologie 34 (1), 1–10. https://doi.org/10.1051/apido:2002049 (2003).
Guimarães, E. et al. Nectar replaced by volatile secretion: A potential new role for nectarless flowers in a bee-pollinated plant species. Front. Plant Sci. 9, 1243J. https://doi.org/10.3389/fpls.2018.01243 (2018).
Galetto, L. & Bernardello, G. Nectar. In Practical Pollination Biology (eds Dafni, A., Kevan, P., Husband, B.C.) 261–313 (Enviroquest, 2005).
Torres, C. & Galetto, L. Patterns and implications of floral nectar secretion, chemical composition, removal effects and standing crop in Mandevilla Pentlandiana (Apocynaceae). Bot. J. Linn. Soc. 127, 207–223. https://doi.org/10.1111/j.1095-8339.1998.tb02098.x (1998).
Quinalha, M. M., Nogueira, A., Ferreira, G. & Guimarães, E. Effect of mutualistic and antagonistic bees on floral resources and pollination of a savanna shrub. Flora 232, 30–38. https://doi.org/10.1016/j.flora.2016.08.005 (2017).
Sponsler, D. B., Hamilton, M., Wiesneth, M. & Dewenter, S. I. Pollinator competition and the contingency of nectar depletion during an early spring resource pulse. Ecol. Evol. 14, e11531. https://doi.org/10.1002/ece3.11531 (2024).
Roberts, M. W. Hummingbirds’ nectar concentration preferences at low volume: The importance of time scale. Anim. Behav. 52 (2), 361–370. https://doi.org/10.1006/anbe.1996.0180 (1996).
Clearwater, M. J., Revell, M., Noe, S. & Manley-Harris, M. Influence of genotype, floral stage, and water stress on floral nectar yield and composition of Manuka (Leptospermum scoparium). Ann. Bot. 121 (3), 501–512. https://doi.org/10.1093/aob/mcx183 (2018).
Willmer, P. Pollination and Floral Ecology (Princeton University Press, 2011).
Balfour, N. J. et al. Energetic efficiency of foraging mediates bee niche partitioning. Ecology 102 (4), e03285. https://doi.org/10.1002/ecy.3285 (2021).
Chittka, L., Thomson, J. & Waser, N. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86, 361–377. https://doi.org/10.1007/s001140050636 (1999).
Roubik, D. W. & Buchmann, S. L. Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical forest. Oecologia 61, 1–10. https://doi.org/10.1007/BF00379082 (1984).
Baptista, C. F. Polinização de Cucurbita pepo (Cucurbitaceae) por Melipona quadrifasciata (Hymenoptera: Apidae: Meliponini) em cultivo protegido. PhD Thesis (Universidade Federal de Viçosa Curso de Entomologia, 2016).
Chittka, L., Gumbert, A. & Kunze, J. Foraging dynamics of bumble bees: Correlates of movements within and between plant species. Behav. Ecol. 8 (3), 239–249. https://doi.org/10.1093/beheco/8.3.239 (1997).
Frigero, M. L. P. et al. Nectary size and nectar production in pistillate and staminate flowers of Cucurbita Pepo L. (Cucurbitaceae). Int. J. Plant Repro Biol. 14 (1), 23 (2022).
Tsuji, K., Kobayashi, K., Hasegawa, E. & Yoshimura, J. Dimorphic flowers modify the visitation order of pollinators from male to female flowers. Sci. Rep. 10, 9965. https://doi.org/10.1038/s41598-020-66525-5 (2020).
Campbell, L. G., Luo, J. & Mercer, K. L. Effect of water availability and genetic diversity on flowering phenology, synchrony and reproductive investment in summer squash. J. Agric. Sci. 151, 775–786. https://doi.org/10.1017/S0021859612000731 (2013).
Free, J. B. Insect Pollination of Crops (Academic, 1993).
Ratnieks, F. L. W. & Balfour, N. J. Plants and pollinators: Will natural selection cause an imbalance between nectar supply and demand? Ecol. Lett. 24 (9), 1741–1749. https://doi.org/10.1111/ele.13823 (2021).
Wilson Rankin, E. E., Barney, S. K. & Lozano, G. E. Reduced water negatively impacts social bee survival and productivity via shifts in floral nutrition. J. Insect Sci. 20 (5), 15. https://doi.org/10.1093/jisesa/ieaa114 (2020).
IPBES. The assessment report of the intergovernmental Science-Policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. In Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Potts, S. G., Imperatriz-Fonseca, V. L. & Ngo, H. T), 552 (2016).
Dicks, L. V. et al. How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. Ecol. Entomol. 40, 22–35. https://doi.org/10.1111/een.12226 (2015).
Helming, K., Römkens, M. J. & Prasad, S. N. Surface roughness related processes of runoff and soil loss: A flume study. Soil Sci. Soc. Am. J. 62 (1), 243–250. https://doi.org/10.2136/sssaj1998.03615995006200010031x (1998).
Ortega, E., Dicenta, F. & Egea, J. Rain effect on pollen-stigma adhesion and fertilization in almond. Sci. Hortic. 112 (3), 345–348. https://doi.org/10.1016/j.scienta.2006.12.043 (2007).
Lawson, D. A., Whitney, H. M. & Rands, S. A. Colour as a backup for scent in the presence of olfactory noise: Testing the efficacy backup hypothesis using bumblebees (Bombus terrestris). R. Soc. Open. Sci. 4 (11), 170996. https://doi.org/10.1098/rsos.170996 (2017).
Totland, O. Intraseasonal variation in pollination intensity and seed set in an alpine population of Ranunculus acris in Southwestern Norway. Ecography 17 (2), 159–165. https://doi.org/10.1111/j.1600-0587.1994.tb00089.x (1994).
Heinrich, B. Bumblebee Economic: With a New Preface (Harvard University Press, 2004).
Lawson, D. A. & Rands, S. A. The effects of rainfall on plant–pollinator interactions. Arthropod Plant Interact. 13 (4), 561–569. https://doi.org/10.1007/s11829-019-09686-z (2019).
Singh, B. & Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 3, 518. https://doi.org/10.1007/s42452-021-04521-8 (2021).
Singh, N., Sharma, N. & Katnoria, J. K. Monitoring of water pollution and its consequences: An overview. Aeu-Int. J. Electron. C. 8 (11), 133–141. https://doi.org/10.5281/zenodo.2659861 (2014).
Aquino, F. C. F. Necessidade hídrica e adubação potássica no cultivo da abobrinha em ambiente protegido. PhD Thesis (Universidade Federal Rural do Semi-árido Centro de Ciências Agrárias Curso de Agronomia, 2019).
Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041 (2016).
Brondizio, E. S. et al. Millions of jobs in food production are disappearing—a change in mindset would help to keep them. Nature 620, 33–36. https://doi.org/10.1038/d41586-023-02447-2 (2023).
Steward, P. R. et al. Pollination and biological control research: Are we neglecting two billion smallholders. Agric. Food Secur. 3, 5. https://doi.org/10.1186/2048-7010-3-5 (2014).
Silveira, G. S. R. & Carvalho, S. P. August Empresa de Assistência Técnica e Extensão Rural do Estado de Minas Gerais—EMATER-MG. Cultura da Abobrinha-Italiana (2022). https://www.emater.mg.gov.br/doc/intranet/upload/LivrariaVirtual/cultura%20da26%20abobrinha-italiana.pdf. Accessed 02 August 2022.
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023). https://www.R-project.org/
Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.2. https://CRAN.R-project.org/package=emmeans (2022).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).
Dutang, C., Goulet, V. & Pigeon, M. actuar: An R package for actuarial science. J. Stat. Softw. 25 (7), 1–37. https://doi.org/10.18637/jss.v025.i07 (2008).
Delignette-Muller, M. L. & Dutang, C. Fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64 (4), 1–34. https://doi.org/10.18637/jss.v064.i04 (2015).
Fournier, D. A. et al. AD model builder: Using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Method Softw. 27 (2), 233–249. https://doi.org/10.1080/10556788.2011.597854 (2012).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Bolker, B., Skaug, H. & Laake, J. R2admb: ‘ADMB’ to R Interface Functions. R package version 0.7.16.2. https://CRAN.R-project.org/package=R2admb (2022).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Xiao, N. ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for ‘ggplot2’. R Package Version 3.0.0. https://CRAN.R-project.org/package=ggsci (2023).
Arnold, J. ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 5.0.0. https://CRAN.R-project.org/package=ggthemes (2023).
Pedersen, T. patchwork: The Composer of Plots. R package version 1.1.3. https://CRAN.R-project.org/package=patchwork (2023).
Qiu, Y. showtext: Using Fonts More Easily in R Graphs. R package version 0.9-7. https://CRAN.R-project.org/package=showtext (2024).
Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.5.1. https://CRAN.R-project.org/package=stringr (2023).
Wickham, H. et al. Welcome to the Tidyv/erse. J. Open Source Softw. 4 (43), 1686. https://doi.org/10.21105/joss.01686 (2019).