Abbass, K. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 29.28, 42539–42559 (2022).

Article 

Google Scholar
 

Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10.1, 13768 (2020).

Article 
ADS 

Google Scholar
 

Cappelli, F., Valeria, C. & Davide, C. The trap of climate change-induced natural disasters and inequality. Glob. Environ. Change. 70, 102329 (2021).

Article 

Google Scholar
 

Rantanen, M. et al. The Arctic has warmed nearly four times faster than the Globe since 1979. Commun. Earth Environ. 3 (1), 168 (2022).

Article 
ADS 

Google Scholar
 

Chylek, P. et al. Annual mean Arctic amplification 1970–2020: observed and simulated by CMIP6 climate models. Geophys. Res. Lett. 49(13), e2022GL099371 (2022).

Francis, J. A., Vavrus, S. J. & Cohen, J. Amplified Arctic warming and mid-latitude weather: new perspectives on emerging connections. Wiley Interdisciplinary Reviews: Clim. Change 8(5), e474, (2017).

Zhang, X. et al. Enhanced Poleward moisture transport and amplified Northern high-latitude wetting trend. Nat. Clim. Change. 3, 47–51 (2013).

Article 
ADS 
CAS 

Google Scholar
 

Bintanja, R. & Selten, F. M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509 (7501), 479–482 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Vihma, T. et al. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. JGR Biogeosciences. 121, 3 (2015).


Google Scholar
 

McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C. & Screen, J. A. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun. 12, 6765 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sledd, A. & L’Ecuyer, T. Uncertainty in forced and natural Arctic solar absorption variations in CMIP6 models. J. Clim. 34 (3), 931–948 (2021).

Article 
ADS 

Google Scholar
 

Holland, M. M. & Landrum, L. The emergence and transient nature of Arctic amplification in coupled climate models. Front. Earth Sci. 9, 719024 (2021).

Article 

Google Scholar
 

Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39(1), (2012).

Sledd, A. & L’Ecuyer, T. S. Emerging trends in Arctic solar absorption. Geophys. Res. Lett., 48(24), e2021GL095813 (2021).

Jahn, A. & Laiho, R. Forced changes in the Arctic freshwater budget emerge in the early 21st century. Geophys. Res. Lett., 47(15), e2020GL088854 (2020).

Landrum, L. & Holland, M. M. Extremes become routine in an emerging new Arctic. Nat. Clim. Change. 10 (12), 1108–1115 (2020).

Article 
ADS 

Google Scholar
 

Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19 (2009).

Article 
ADS 

Google Scholar
 

Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev. 9 (5), 1937–1958 (2016).

Article 
ADS 

Google Scholar
 

Bintanja, R. et al. Strong future increases in Arctic precipitation variability linked to Poleward moisture transport. Sci. Adv. 6 (7), eaax6869 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Andry, O., Bintanja, R. & Hazeleger, W. Time-Dependent variations in the Arctic’s surface albedo feedback and the link to seasonality in sea ice. J. Clim. 30, 393–410 (2017).

Article 
ADS 

Google Scholar
 

Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Bintanja, R. The impact of Arctic warming on increased rainfall. Sci. Rep. 8, 16001 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kolbe, M., Bintanja, R. & van der Linden, E. C. Seasonal and regional contrasts of future trends in interannual Arctic climate variability. Clim. Dyn. 61, 3673–3706 (2023).

Article 

Google Scholar
 

Vincent, W. F. et al. Ecological implications of changes in the Arctic cryosphere. Ambio 40 (SUPPL. 1), 87–99 (2011).

Article 

Google Scholar
 

Foden, W. B. Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Clim. Change. 10 (1), 1–36 (2019).


Google Scholar
 

Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

Article 

Google Scholar
 

Corell, R. W. Challenges of climate change: an Arctic perspective. AMBIO: J. Hum. Environ. 35 (4), 148–152 (2006).

Article 

Google Scholar
 

von Schneider, T. et al. Consequences of permafrost degradation for Arctic infrastructure–bridging the model gap between regional and engineering scales. Cryosphere 15 (5), 2451–2471 (2021).

Article 
ADS 

Google Scholar
 

Revich, B. A., Eliseev, D. O. & Shaposhnikov, D. A. Risks for public health and social infrastructure in Russian Arctic under climate change and permafrost degradation. Atmosphere 13.4, 532 (2022).

Article 
ADS 

Google Scholar
 

Galappaththi, E. K., Ford, J. D., Bennett, E. M. & Berkes, F. Climate change and community fisheries in the Arctic: a case study from Pangnirtung, Canada. J. Environ. Manage. 250, 109534 (2019).

Article 
PubMed 

Google Scholar
 

Moerlein, K. J. & Carothers, C. Total environment of change: impacts of climate change and social transitions on subsistence fisheries in Northwest Alaska. Ecol. Soc., 17.1, (2012).

Druckenmiller, M. L., Thoman, R. L. & Moon, T. A. Arctic Report Card 2022: Executive Summary. https://doi.org/10.25923/yjx6-r184 (2022).

Tian, T. et al. Cooler Arctic surface temperatures simulated by climate models are closer to satellite-based data than the ERA5 reanalysis. Commun. Earth Environ. 5 (1), 111 (2024).

Article 
ADS 

Google Scholar
 

Davy, R. The Arctic surface climate in CMIP6: status and developments since CMIP5. J. Clim. 33, 8047–8068 (2020).

Article 
ADS 

Google Scholar
 

Barrett, A. P., Julienne, C., Stroeve, Mark, C. & Serreze Arctic ocean precipitation from atmospheric reanalyses and comparisons with North pole drifting station records. J. Geophys. Research: Oceans 125(1), e2019JC015415 (2020).

Herrmannsdörfer, L. et al. Surface temperature comparison of the Arctic winter mosaic observations, ERA5 reanalysis, and MODIS satellite retrieval. Elem. Sci. Anth. 11 (1), 00085 (2023).

Article 

Google Scholar
 

Lehner, F., Deser, C. & Terray, L. Toward a new estimate of time of emergence of anthropogenic warming: insights from dynamical adjustment and a large initial-condition model ensemble. J. Clim. 30 (19), 7739–7756. https://doi.org/10.1175/JCLI-D-16-0792.1 (2017).

Article 
ADS 

Google Scholar