Abbass, K. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 29.28, 42539–42559 (2022).
Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10.1, 13768 (2020).
Cappelli, F., Valeria, C. & Davide, C. The trap of climate change-induced natural disasters and inequality. Glob. Environ. Change. 70, 102329 (2021).
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the Globe since 1979. Commun. Earth Environ. 3 (1), 168 (2022).
Chylek, P. et al. Annual mean Arctic amplification 1970–2020: observed and simulated by CMIP6 climate models. Geophys. Res. Lett. 49(13), e2022GL099371 (2022).
Francis, J. A., Vavrus, S. J. & Cohen, J. Amplified Arctic warming and mid-latitude weather: new perspectives on emerging connections. Wiley Interdisciplinary Reviews: Clim. Change 8(5), e474, (2017).
Zhang, X. et al. Enhanced Poleward moisture transport and amplified Northern high-latitude wetting trend. Nat. Clim. Change. 3, 47–51 (2013).
Bintanja, R. & Selten, F. M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509 (7501), 479–482 (2014).
Vihma, T. et al. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. JGR Biogeosciences. 121, 3 (2015).
McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C. & Screen, J. A. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun. 12, 6765 (2021).
Sledd, A. & L’Ecuyer, T. Uncertainty in forced and natural Arctic solar absorption variations in CMIP6 models. J. Clim. 34 (3), 931–948 (2021).
Holland, M. M. & Landrum, L. The emergence and transient nature of Arctic amplification in coupled climate models. Front. Earth Sci. 9, 719024 (2021).
Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39(1), (2012).
Sledd, A. & L’Ecuyer, T. S. Emerging trends in Arctic solar absorption. Geophys. Res. Lett., 48(24), e2021GL095813 (2021).
Jahn, A. & Laiho, R. Forced changes in the Arctic freshwater budget emerge in the early 21st century. Geophys. Res. Lett., 47(15), e2020GL088854 (2020).
Landrum, L. & Holland, M. M. Extremes become routine in an emerging new Arctic. Nat. Clim. Change. 10 (12), 1108–1115 (2020).
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19 (2009).
Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev. 9 (5), 1937–1958 (2016).
Bintanja, R. et al. Strong future increases in Arctic precipitation variability linked to Poleward moisture transport. Sci. Adv. 6 (7), eaax6869 (2020).
Andry, O., Bintanja, R. & Hazeleger, W. Time-Dependent variations in the Arctic’s surface albedo feedback and the link to seasonality in sea ice. J. Clim. 30, 393–410 (2017).
Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).
Bintanja, R. The impact of Arctic warming on increased rainfall. Sci. Rep. 8, 16001 (2018).
Kolbe, M., Bintanja, R. & van der Linden, E. C. Seasonal and regional contrasts of future trends in interannual Arctic climate variability. Clim. Dyn. 61, 3673–3706 (2023).
Vincent, W. F. et al. Ecological implications of changes in the Arctic cryosphere. Ambio 40 (SUPPL. 1), 87–99 (2011).
Foden, W. B. Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Clim. Change. 10 (1), 1–36 (2019).
Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Corell, R. W. Challenges of climate change: an Arctic perspective. AMBIO: J. Hum. Environ. 35 (4), 148–152 (2006).
von Schneider, T. et al. Consequences of permafrost degradation for Arctic infrastructure–bridging the model gap between regional and engineering scales. Cryosphere 15 (5), 2451–2471 (2021).
Revich, B. A., Eliseev, D. O. & Shaposhnikov, D. A. Risks for public health and social infrastructure in Russian Arctic under climate change and permafrost degradation. Atmosphere 13.4, 532 (2022).
Galappaththi, E. K., Ford, J. D., Bennett, E. M. & Berkes, F. Climate change and community fisheries in the Arctic: a case study from Pangnirtung, Canada. J. Environ. Manage. 250, 109534 (2019).
Moerlein, K. J. & Carothers, C. Total environment of change: impacts of climate change and social transitions on subsistence fisheries in Northwest Alaska. Ecol. Soc., 17.1, (2012).
Druckenmiller, M. L., Thoman, R. L. & Moon, T. A. Arctic Report Card 2022: Executive Summary. https://doi.org/10.25923/yjx6-r184 (2022).
Tian, T. et al. Cooler Arctic surface temperatures simulated by climate models are closer to satellite-based data than the ERA5 reanalysis. Commun. Earth Environ. 5 (1), 111 (2024).
Davy, R. The Arctic surface climate in CMIP6: status and developments since CMIP5. J. Clim. 33, 8047–8068 (2020).
Barrett, A. P., Julienne, C., Stroeve, Mark, C. & Serreze Arctic ocean precipitation from atmospheric reanalyses and comparisons with North pole drifting station records. J. Geophys. Research: Oceans 125(1), e2019JC015415 (2020).
Herrmannsdörfer, L. et al. Surface temperature comparison of the Arctic winter mosaic observations, ERA5 reanalysis, and MODIS satellite retrieval. Elem. Sci. Anth. 11 (1), 00085 (2023).
Lehner, F., Deser, C. & Terray, L. Toward a new estimate of time of emergence of anthropogenic warming: insights from dynamical adjustment and a large initial-condition model ensemble. J. Clim. 30 (19), 7739–7756. https://doi.org/10.1175/JCLI-D-16-0792.1 (2017).