Brodie, J. F. & Watson, J. E. M. Human responses to climate change will likely determine the fate of biodiversity. Proc. Natl Acad. Sci. 120, e2205512120 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pereira, H. M. et al. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465 (2024).

Article 
ADS 
PubMed 

Google Scholar
 

Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

Article 
ADS 
PubMed 

Google Scholar
 

Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

Article 
PubMed 

Google Scholar
 

Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Chang. Biol. 25, 1561–1575 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Germain, R. R. et al. Species-specific traits mediate avian demographic responses under past climate change. Nat. Ecol. Evol. 7, 862–872 (2023).

Article 
PubMed 

Google Scholar
 

Hällfors, M. H. et al. Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecol. Appl. 26, 1154–1169 (2016).

Article 
PubMed 

Google Scholar
 

Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. Usa. 116, 10418–10423 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Buechley, E. R. et al. Differential survival throughout the full annual cycle of a migratory bird presents a life-history trade-off. J. Anim. Ecol. 90, 1228–1238 (2021).

Article 
PubMed 

Google Scholar
 

Newton, I. The migration ecology of birds. (Academic Press, 2008).

Shaw, T. A. et al. Regional climate change: consensus, discrepancies, and ways forward. Front. Clim. 6, 1391634 (2024).

Article 

Google Scholar
 

Thorup, K. et al. Response of an Afro-Palearctic bird migrant to glaciation cycles. Proc. Natl. Acad. Sci. USA. 118, e2023836118 (2021).

Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 2, 173–179 (1992).


Google Scholar
 

Dufour, P. et al. A new westward migration route in an Asian passerine bird. Curr. Biol. 31, 5590–5596.e4 (2021).

Article 
PubMed 

Google Scholar
 

Ambrosini, R. et al. Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Clim. Res. 49, 131–141 (2011).

Article 

Google Scholar
 

Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA. 117, 18557–18565 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Romano, A., Garamszegi, L. Z., Rubolini, D. & Ambrosini, R. Temporal shifts in avian phenology across the circannual cycle in a rapidly changing climate: a global meta‐analysis. Ecol. Monogr. 93, e1552 (2023).

Bairlein, F. Migratory birds under threat. Science 354, 547–548 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).

Article 

Google Scholar
 

Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).

Article 

Google Scholar
 

Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

Article 
ADS 
PubMed 

Google Scholar
 

Howard, C. et al. Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Proc. Biol. Sci. 285, 20172329 (2018).

Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl Acad. Sci. Usa. 105, 16195–16200 (2008).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. Biol. Sci. 278, 835–842 (2011).

PubMed 

Google Scholar
 

Christie, D. A. & Ferguson-Lees, J. Raptors of the World. (Bloomsbury Publishing, 2010).

Iñigo, A. & Barov, B. Action plan for the lesser kestrel Falco naumanni in the European Union. Madrid: SEO‐BirdLife and BirdLife International for the European Commission. Madrid: SEO‐BirdLife and BirdLife International for the European Commission (2010).

Morganti, M., Preatoni, D. & Sarà, M. Climate determinants of breeding and wintering ranges of lesser kestrels in Italy and predicted impacts of climate change. J. Avian Biol. 48, 1595–1607 (2017).

Article 

Google Scholar
 

BirdLife International. Species factsheet: Falco naumanni. https://datazone.birdlife.org/species/factsheet/lesser-kestrel-falco-naumanni (2024).

Bounas, A. et al. Genetic structure of a patchily distributed philopatric migrant: implications for management and conservation. Biol. J. Linn. Soc. Lond. 124, 633–644 (2018).

Article 

Google Scholar
 

Negro, J. J., Prenda, J., Ferrero, J. J., Rodríguez, A. & Reig-Ferrer, A. A timeline for the urbanization of wild birds: the case of the lesser kestrel. Quat. Sci. Rev. 249, 106638 (2020).

Article 

Google Scholar
 

Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).

Article 
PubMed 

Google Scholar
 

Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

Article 
PubMed 

Google Scholar
 

Turbek, S. P., Funk, W. C. & Ruegg, K. C. Where to draw the line? Expanding the delineation of conservation units to highly mobile taxa. J. Hered. 114, 300–311 (2023).

Article 
PubMed 

Google Scholar
 

Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen, Y. et al. The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability. Nat. Commun. 13, 4821 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Delmore, K. E. et al. Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Mol. Ecol. 24, 1873–1888 (2015).

Article 
PubMed 

Google Scholar
 

Gu, Z. et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 591, 259–264 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Sønstebø, J. H. et al. Population genomics of a forest fungus reveals high gene flow and climate adaptation signatures. Mol. Ecol. 31, 1963–1979 (2022).

Article 
PubMed 

Google Scholar
 

Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (Mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).

Article 

Google Scholar
 

Rodríguez, A., Alcaide, M., Negro, J. J. & Pilard, P. Using major histocompatibility complex markers to assign the geographic origin of migratory birds: examples from the threatened lesser kestrel. Anim. Conserv. 14, 306–313 (2011).

Article 

Google Scholar
 

Wink, M., Sauer-Gürth, H. & Pepler, D. Phylogeographic relationships of the Lesser Kestrel (Falco naumanni) in breeding and wintering quarters inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Wink, M; Sauer-Gürth, H; Pepler, D; in Raptors Worldwide (eds. Chancellor, R. D. & Meyburg, B. U.) 505–510 (WWGBP, Berlin, 2004).

Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).

Article 
PubMed 

Google Scholar
 

Catchen, J. M. et al. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol. Ecol. Resour. 17, 362–365 (2017).

Article 
PubMed 

Google Scholar
 

McKinney, G. J., Larson, W. A., Seeb, L. W. & Seeb, J. E. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol. Ecol. Resour. 17, 356–361 (2017).

Article 
PubMed 

Google Scholar
 

Mérot, C., Oomen, R. A., Tigano, A. & Wellenreuther, M. A roadmap for understanding the evolutionary significance of structural genomic variation. Trends Ecol. Evol. 35, 561–572 (2020).

Article 
PubMed 

Google Scholar
 

Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).

Article 
ADS 

Google Scholar
 

Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671(2016).

Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science 369, eabc5654 (2020).

Nogués-Bravo, D. et al. Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33, 765–776 (2018).

Article 
PubMed 

Google Scholar
 

Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

Article 
ADS 
PubMed 

Google Scholar
 

Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671 (2010).

PubMed 

Google Scholar
 

Pârâu, L. G. & Wink, M. Common patterns in the molecular phylogeography of western palearctic birds: a comprehensive review. J. Ornithol. 162, 937–959 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Claussen, M., Dallmeyer, A. & Bader, J. Theory and modeling of the African humid period and the green Sahara. in Oxford Research Encyclopedia Of Climate Science https://doi.org/10.1093/acrefore/9780190228620.013.532 (2017).

Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl Acad. Sci. USA. 105, 11597–11604 (2008).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Buchan, C., Gilroy, J. J., Catry, I. & Franco, A. M. A. Fitness consequences of different migratory strategies in partially migratory populations: A multi-taxa meta-analysis. J. Anim. Ecol. 89, 678–690 (2020).

Article 
PubMed 

Google Scholar
 

Ruegg, K. C., Hijmans, R. J. & Moritz, C. Climate change and the origin of migratory pathways in the Swainson’s thrush, Catharus ustulatus. J. Biogeogr. 33, 1172–1182 (2006).

Article 

Google Scholar
 

Bustamante, J. Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Biol. Conserv. 80, 153–160 (1997).

Article 

Google Scholar
 

Morganti, M. et al. Assessing the relative importance of managed crops and semi-natural grasslands as foraging habitats for breeding lesser kestrels Falco naumanni in southeastern Italy. Wildl. Biol. 2021, 1–10 (2021).

Article 

Google Scholar
 

Parr, S. J. et al. A baseline survey of Lesser Kestrel Falco naumanni in south-east Kazakhstan, April-may 1997. Sandgrouse 22, 36–43 (2000).


Google Scholar
 

Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol. 5, 1350–1360 (2021).

Article 
PubMed 

Google Scholar
 

Ahrens, C. W., Rymer, P. D. & Miller, A. D. Genetic offset and vulnerability modelling: misinterpretations of results and violations of evolutionary principles. Authorea Preprints https://doi.org/10.22541/au.168727971.18670759/v1 (2023).

Rellstab, C. Genomics helps to predict maladaptation to climate change. Nat. Clim. Chang. 11, 85–86 (2021).

Article 
ADS 

Google Scholar
 

Negro, J. J. & De La Riva, M. Patterns of winter distribution and abundance of lesser kestrels (Falco naumanni) in Spain. J. Raptor Res. 25, 2 (1991).


Google Scholar
 

Bustamante, J. Cernícalo primilla (Falco naumanni). in SEO/BirdLife: Atlas de las aves en invierno en España 2007-2010 36–47 (Ministerio de Agricultura, Alimentación y Medio Ambiente-SEO/BirdLife. Madrid, 2012).

Brooks, M. et al. The African Bird Atlas Project: a description of the project and BirdMap data-collection protocol. Ostrich 93, 223–232 (2022).

Article 

Google Scholar
 

Brauer, C. J. et al. Natural hybridization reduces vulnerability to climate change. Nat. Clim. Chang. 13, 282–289 (2023).

ADS 

Google Scholar
 

Owens, G. L. & Samuk, K. Adaptive introgression during environmental change can weaken reproductive isolation. Nat. Clim. Chang. 10, 58–62 (2019).

Article 
ADS 

Google Scholar
 

Corregidor-Castro, A. et al. Experimental nest cooling reveals dramatic effects of heatwaves on reproduction in a Mediterranean bird of prey. Glob. Chang. Biol. 29, 5552–5567 (2023).

Article 
PubMed 

Google Scholar
 

Catry, I., Amano, T., Franco, A. M. A. & Sutherland, W. J. Influence of spatial and temporal dynamics of agricultural practices on the lesser kestrel: Farmland management and lesser kestrel breeding success. J. Appl. Ecol. 49, 99–108 (2012).

Article 

Google Scholar
 

Zwarts, L., Bijlsma, R. G. & van der Kamp, J. The fortunes of migratory birds from Eurasia: Being on a tightrope in the Sahel. Ardea 111, 397–437 (2023).

Article 

Google Scholar
 

Mihoub, J.-B., Gimenez, O., Pilard, P. & Sarrazin, F. Challenging conservation of migratory species: Sahelian rainfalls drive first-year survival of the vulnerable Lesser Kestrel Falco naumanni. Biol. Conserv. 143, 839–847 (2010).

Article 

Google Scholar
 

Morganti, M., Ambrosini, R. & Sarà, M. Different trends of neighboring populations of Lesser Kestrel: effects of climate and other environmental conditions. Popul. Ecol. 61, 300–314 (2019).

Article 

Google Scholar
 

Catry, I., Catry, T., Patto, P., Franco, A. M. A. & Moreira, F. Differential heat tolerance in nestlings suggests sympatric species may face different climate change risks. Clim. Res. 66, 13–24 (2015).

Article 

Google Scholar
 

Marcelino, J. et al. Extreme events are more likely to affect the breeding success of lesser kestrels than average climate change. Sci. Rep. 10, 7207 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Catry, I., Franco, A. M. A. & Sutherland, W. J. Adapting conservation efforts to face climate change: Modifying nest-site provisioning for lesser kestrels. Biol. Conserv. 144, 1111–1119 (2011).

Article 

Google Scholar
 

Corregidor-Castro, A. et al. Temperature-related developmental plasticity, not selection, affects offspring body size and shape in a bird of prey. EcoEvoRxiv https://doi.org/10.32942/X2G04G (2024).

Article 

Google Scholar
 

Aparicio, J. M., Muñoz, A., Cordero, P. J. & Bonal, R. Causes of the recent decline of a Lesser Kestrel (Falco naumanni) population under an enhanced conservation scenario. Ibis 165, 388–402 (2022).

Article 

Google Scholar
 

Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

Article 
ADS 
PubMed 

Google Scholar
 

Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).

Article 

Google Scholar
 

Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lombardo, G. et al. The mitogenome relationships and phylogeography of barn swallows (Hirundo rustica). Mol. Biol. Evol. 39, msac113 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cho, Y. S. et al. Raptor genomes reveal evolutionary signatures of predatory and nocturnal lifestyles. Genome Biol. 20, 181 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cramp, S. et al. The Complete Birds of the Western Palearctic on CD-ROM. (Oxford University Press, Oxford, England, 1998).

Berlusconi, A. et al. Intra-guild spatial niche overlap among three small falcon species in an area of recent sympatry. Eur. Zool. J. 89, 510–526 (2022).

Article 

Google Scholar
 

Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

Article 

Google Scholar
 

Boucher-Lalonde, V., Morin, A. & Currie, D. J. A consistent occupancy-climate relationship across birds and mammals of the Americas. Oikos 123, 1029–1036 (2014).

Article 
ADS 

Google Scholar
 

Buckley, L. B. & Jetz, W. Linking global turnover of species and environments. Proc. Natl Acad. Sci. Usa. 105, 17836–17841 (2008).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Rodríguez, A., Negro, J. J., Bustamante, J., Fox, J. W. & Afanasyev, V. Geolocators map the wintering grounds of threatened Lesser Kestrels in Africa. Divers. Distrib. 15, 1010–1016 (2009).

Article 

Google Scholar
 

Sarà, M. et al. Broad‐front migration leads to strong migratory connectivity in the lesser kestrel (Falco naumanni). J. Biogeogr. 46, 2663–2677 (2019).

Article 

Google Scholar
 

Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. The R package ‘phuassess’ for assessing habitat selection using permutation-based combination of sign tests. Mamm. Biol. 83, 64–70 (2017).

Article 

Google Scholar
 

Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

Article 

Google Scholar
 

Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 27, 2215–2233 (2018).

Article 
PubMed 

Google Scholar
 

Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).

Article 
PubMed 

Google Scholar
 

Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).

Article 
PubMed 

Google Scholar
 

Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

Article 
PubMed 

Google Scholar
 

Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Capblancq, T., Lachmuth, S., Fitzpatrick, M. C. & Keller, S. R. From common gardens to candidate genes: exploring local adaptation to climate in red spruce. N. Phytol. 237, 1590–1605 (2022).

Article 

Google Scholar
 

Gain, C. et al. A quantitative theory for genomic offset statistics. Mol. Biol. Evol. 40, msad140 (2023).

Capblancq, T. & Forester, B. R. Redundancy analysis: a swiss army knife for landscape genomics. Methods Ecol. Evol. 12, 2298–2309 (2021).

Article 

Google Scholar
 

Capblancq, T. et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. 33, 783–796 (2020).

Article 
PubMed 

Google Scholar
 

Rodríguez, C. & Bustamante, J. The effect of weather on lesser kestrel breeding success: can climate change explain historical population declines? J. Anim. Ecol. 72, 793–810 (2003).

Article 

Google Scholar
 

Zhan, X. et al. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat. Genet. 45, 563–566 (2013).

Article 
PubMed 

Google Scholar
 

Augustin, L. et al. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

Article 
ADS 
PubMed 

Google Scholar