Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024).

Article 
PubMed 

Google Scholar
 

Łukasiewicz, S. et al. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers 13, 4287 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Harbeck, N. et al. Breast cancer. Nat. Rev. Dis. Prim. 5, 66 (2019).

Article 
PubMed 

Google Scholar
 

Loibl, S., Poortmans, P., Morrow, M., Denkert, C. & Curigliano, G. Breast cancer. Lancet 397, 1750–1769 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Sun, Y. S. et al. Risk factors and preventions of breast cancer. Int J. Biol. Sci. 13, 1387–1397 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Provenzano, E., Ulaner, G. A. & Chin, S. F. Molecular classification of breast cancer. PET Clin. 13, 325–338 (2018).

Article 
PubMed 

Google Scholar
 

Agostinetto, E., Gligorov, J. & Piccart, M. Systemic therapy for early-stage breast cancer: learning from the past to build the future. Nat. Rev. Clin. Oncol. 19, 763–774 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Burguin, A., Diorio, C. & Durocher, F. Breast cancer treatments: updates and new challenges. J. Pers. Med. 11, 808 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tsimberidou, A. M., Fountzilas, E., Nikanjam, M. & Kurzrock, R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev. 86, 102019 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ahmed, Z. Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis. Hum. Genom. 14, 35 (2020).

Article 

Google Scholar
 

Naithani, N., Sinha, S., Misra, P., Vasudevan, B. & Sahu, R. Precision medicine: concept and tools. Med J. Armed Forces India 77, 249–257 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol. 22, 343 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chandrashekar, D. S. et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 25, 18–27 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schettini, F. et al. Identification of cell surface targets for CAR-T cell therapies and antibody-drug conjugates in breast cancer. ESMO Open 6, 100102 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bosi, C. et al. Pan-cancer analysis of antibody-drug conjugate targets and putative predictors of treatment response. Eur. J. Cancer 195, 113379 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Hernandez-Gamarra, M. et al. CARTAR: a comprehensive web tool for identifying potential targets in chimeric antigen receptor therapies using TCGA and GTEx data. Brief. Bioinf. 25, bbae326 (2024).

Article 
CAS 

Google Scholar
 

Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

Article 
PubMed 

Google Scholar
 

Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6, pl1 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

de Bruijn, I. et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Res. 83, 3861–3867 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–w560 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Staaf, J. et al. RNA sequencing-based single sample predictors of molecular subtype and risk of recurrence for clinical assessment of early-stage breast cancer. NPJ. Breast Cancer 8, 94 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Saal, L. H. et al. The Sweden Cancerome Analysis Network – Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine. Genome Med. 7, 20 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Aure, M. R. et al. Integrative clustering reveals a novel split in the luminal A subtype of breast cancer with impact on outcome. Breast Cancer Res. 19, 44 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brueffer, C. et al. Clinical value of RNA sequencing-based classifiers for prediction of the five conventional breast cancer biomarkers: a report from the population-based multicenter sweden cancerome analysis network-breast initiative. JCO Precis. Oncol. 2, https://doi.org/10.1200/po.17.00135 (2018).

Creighton, C. J. The molecular profile of luminal B breast cancer. Biologics 6, 289–297 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kessler, J. D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348–353 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

Article 
PubMed 

Google Scholar
 

Creighton, C. J. Gene expression profiles in cancers and their therapeutic implications. Cancer J. 29, 9–14 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun. 7, 11479 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pacini, C. et al. Integrated cross-study datasets of genetic dependencies in cancer. Nat. Commun. 12, 1661 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, F., Chandrashekar, D. S., Varambally, S. & Creighton, C. J. Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nat. Commun. 10, 5679 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Monsivais, D. et al. Mass-spectrometry-based proteomic correlates of grade and stage reveal pathways and kinases associated with aggressive human cancers. Oncogene 40, 2081–2095 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Varley, K. E. et al. Recurrent read-through fusion transcripts in breast cancer. Breast Cancer Res. Treat. 146, 287–297 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Saleh, M. et al. Comparative analysis of triple-negative breast cancer transcriptomics of Kenyan, African American and Caucasian Women. Transl. Oncol. 14, 101086 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Identification of five cytotoxicity-related genes involved in the progression of triple-negative breast cancer. Front Genet 12, 723477 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602.e510 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brunner, A. L. et al. A shared transcriptional program in early breast neoplasias despite genetic and clinical distinctions. Genome Biol. 15, R71 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bownes, R. J. et al. On-treatment biomarkers can improve prediction of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. 21, 73 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen, J. et al. Machine learning models based on immunological genes to predict the response to neoadjuvant therapy in breast cancer patients. Front Immunol. 13, 948601 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Turnbull, A. K. et al. Unlocking the transcriptomic potential of formalin-fixed paraffin embedded clinical tissues: comparison of gene expression profiling approaches. BMC Bioinforma. 21, 30 (2020).

Article 
CAS 

Google Scholar
 

Barakat, T. S. et al. Functional dissection of the enhancer repertoire in human embryonic stem cells. Cell Stem Cell 23, 276–288.e278 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mohammed, H. et al. Progesterone receptor modulates ERα action in breast cancer. Nature 523, 313–317 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wahdan-Alaswad, R. S. et al. Thyroid hormone enhances estrogen-mediated proliferation and cell cycle regulatory pathways in steroid receptor-positive breast Cancer. Cell Cycle, 1–20, (2023).

Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Garcia-Recio, S. et al. Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nat. Cancer 4, 128–147 (2023).

CAS 
PubMed 

Google Scholar
 

Horak, C. E. et al. Biomarker analysis of neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone or Paclitaxel in early-stage breast cancer. Clin. Cancer Res 19, 1587–1595 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Iwamoto, T. et al. Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J. Natl Cancer Inst. 103, 264–272 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Hatzis, C. et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. Jama 305, 1873–1881 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shen, K. et al. Cell line derived multi-gene predictor of pathologic response to neoadjuvant chemotherapy in breast cancer: a validation study on US Oncology 02-103 clinical trial. BMC Med. Genom. 5, 51 (2012).

Article 
CAS 

Google Scholar
 

Korde, L. A. et al. Gene expression pathway analysis to predict response to neoadjuvant docetaxel and capecitabine for breast cancer. Breast Cancer Res. Treat. 119, 685–699 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Prat, A. et al. Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study. Clin. Cancer Res. 20, 511–521 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Miyake, T. et al. GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer Sci. 103, 913–920 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adusumilli, R. & Mallick, P. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 1550, 339–368 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Gomig, T. H. B. et al. High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data. Data Brief. 25, 104125 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

De Marchi, T. et al. Proteogenomic workflow reveals molecular phenotypes related to breast cancer mammographic appearance. J. Proteome Res. 20, 2983–3001 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Anurag, M. et al. Proteogenomic markers of chemotherapy resistance and response in triple-negative breast cancer. Cancer Discov. 12, 2586–2605 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Franco, H. L. et al. Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res. 28, 159–170 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Z. et al. Hotspot ESR1 mutations are multimodal and contextual modulators of breast cancer metastasis. Cancer Res. 82, 1321–1339 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hosseinzadeh, L. et al. The androgen receptor interacts with GATA3 to transcriptionally regulate a luminal epithelial cell phenotype in breast cancer. Genome Biol. 25, 44 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guan, J. et al. Therapeutic ligands antagonize estrogen receptor function by impairing its mobility. Cell 178, 949–963.e918 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Furman, C. et al. Covalent ERα antagonist H3B-6545 demonstrates encouraging preclinical activity in therapy-resistant breast cancer. Mol. Cancer Ther. 21, 890–902 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618, 598–606 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gao, R. et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 39, 599–608 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e1236 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Griffiths, J. I. et al. Serial single-cell genomics reveals convergent subclonal evolution of resistance as early-stage breast cancer patients progress on endocrine plus CDK4/6 therapy. Nat. Cancer 2, 658–671 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bhat-Nakshatri, P. et al. Single-nucleus chromatin accessibility and transcriptomic map of breast tissues of women of diverse genetic ancestry. Nat. Med. https://doi.org/10.1038/s41591-024-03011-9 (2024).

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chandrashekar, D. S. et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar