Chylek, P. et al. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophys Res Lett. 49, e2022GL099371 (2022).
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 1–10 (2022).
Johnson, N. C., Xie, S. P., Kosaka, Y. & Li, X. Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun. 9, 4–6 (2018).
Van Oldenborgh, G. J., Haarsma, R., De Vries, H. & Allen, M. R. Cold extremes in North America vs. mild weather in Europe: The winter of 2013-14 in the context of a warming world. Bull. Am. Meteorol Soc. 96, 707–714 (2015).
Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).
Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).
Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Surrogate climate-change scenarios for regional climate models. Geophys Res Lett. 23, 669–672 (1996).
Brogli, R., Heim, C., Mensch, J., Sorland, S. L. & Schar, C. The pseudo-global-warming (PGW) approach: Methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses. Geosci. Model Dev. 16, 907–926 (2023).
Vries, H., de, Lenderink, G., Meijgaard, E., van, Ulft, B. van & Rooy, W. de. Western Europe’s extreme July 2019 heatwave in a warmer world. Environ. Res.: Clim. 3, 035005 (2024).
Sánchez Benítez, A., Goessling, H., Pithan, F., Semmler, T. & Jung, T. The July 2019 European heatwave in a warmer climate: Storyline scenarios with a coupled model using spectral nudging. J. Clim. 1–51 (2022).
Screen, J. A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Chang 4, 577–582 (2014).
Philip, S. et al. A protocol for probabilistic extreme event attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).
Shepherd, T. G. A Common Framework for Approaches to Extreme Event Attribution. Curr. Clim. Change Rep. 2, 28–38 (2016).
Wehrli, K., Hauser, M. & Seneviratne, S. I. Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels. Earth Syst. Dyn. 11, 855–873 (2020).
Athanase, M., Sánchez-Benítez, A., Goessling, H. F., Pithan, F. & Jung, T. Projected amplification of summer marine heatwaves in a warming Northeast Pacific Ocean. Commun. Earth Environ. 5, 1–12 (2024).
van Garderen, L. & Mindlin, J. A storyline attribution of the 2011/2012 drought in Southeastern South America. Weather 77, 212–218 (2022).
Pithan, F. et al. Nudging allows direct evaluation of coupled climate models with in-situ observations: A case study from the MOSAiC expedition. EGUsphere 1, 23 (2022).
Gessner, C., Fischer, E. M., Beyerle, U. & Knutti, R. Developing Low-Likelihood Climate Storylines for Extreme Precipitation Over Central Europe. Earths Future 11, e2023EF003628 (2023).
Athanase, M., Sánchez-Benítez, A., Monfort, E., Jung, T. & Goessling, H. F. How climate change intensified storm Boris’ extreme rainfall, revealed by near-real-time storylines. Commun. Earth Environ. 2024 5:1 5, 1–5 (2024).
Yao, Y., Zhang, W., Luo, D., Zhong, L. & Pei, L. Seasonal Cumulative Effect of Ural Blocking Episodes on the Frequent Cold events in China during the Early Winter of 2020/21. Adv. Atmos. Sci. 31, 243–251 (2021).
Dai, G., Li, C., Han, Z., Luo, D. & Yao, Y. The Nature and Predictability of the East Asian Extreme Cold Events of 2020/21. Adv. Atmos. Sci. (2021).
Yu, Y. et al. An Isentropic Mass Circulation View on the Extreme Cold Events in the 2020/21 Winter. Adv. Atmos. Sci. 39, 643–657 (2022).
Zhang, X. et al. Extreme Cold Events from East Asia to North America in Winter 2020/21: Comparisons, Causes, and Future Implications. Adv. Atmos. Sci. 39, 553–565 (2022).
Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys Res Lett. 39, 12807 (2012).
Nakamura, N. & Huang, C. S. Y. Atmospheric blocking as a traffic jam in the jet stream. Science (1979) 361, 42–47 (2018).
Kautz, L.-A. et al. Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review. Weather Clim. Dyn. 3, 305–336 (2022).
Luo, D. et al. Weakened Potential Vorticity Barrier Linked to Recent Winter Arctic Sea Ice Loss and Midlatitude Cold Extremes. J. Clim. 32, 4235–4261 (2019).
Luo, D., Chen, X., Dai, A. & Simmonds, I. Changes in Atmospheric Blocking Circulations Linked with Winter Arctic Warming: A New Perspective. J. Clim. 31, 7661–7678 (2018).
Barnes, E. A. & Hartmann, D. L. Influence of eddy-driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations. Geophys. Res. Lett. 37, GL045700 (2010).
Scaife, A. A., Woollings, T., Knight, J., Martin, G. & Hinton, T. Atmospheric blocking and mean biases in climate models. J. Clim. 23, 6143–6152 (2010).
Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of Present and Future European Temperature Extremes on the Location of Atmospheric Blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).
Tibaldi, S. & Molteni, F. On the operational predictability of blocking. Tellus, Ser. A 42, 343–365 (1990).
Blackport, R., Sigmond, M. & Screen, J. A. Models and observations agree on fewer and milder midlatitude cold extremes even over recent decades of rapid Arctic warming. Sci. Adv. 10, eadp1346 (2024).
Cohen, J., Francis, J. A. & Pfeiffer, K. Anomalous Arctic warming linked with severe winter weather in Northern Hemisphere continents. Commun. Earth Environ. 2024 5:1 5, 1–13 (2024).
Cohen, J., Agel, L., Barlow, M., Garfinkel, C. I. & White, I. Arctic change reduces risk of cold extremes: Response. Science (1979) 375, 729–730 (2022).
Hong, Y. et al. From peak to plummet: impending decline of the warm Arctic-cold continents phenomenon. NPJ Clim. Atmos. Sci. 7, 1–5 (2024).
Wu, B., Li, Z., Francis, J. A. & Ding, S. A recent weakening of winter temperature association between Arctic and Asia. Environ. Res. Lett. 17, 034030 (2022).
Cohen, J., Zhang, X., Francis, J. & Al, E. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang 28, 7917–7932 (2019).
Notz, D. & Community, S. Arctic Sea Ice in CMIP6. Geophys Res Lett. 47, e2019GL086749 (2020).
Ono, J., Watanabe, M., Komuro, Y., Tatebe, H. & Abe, M. Enhanced Arctic warming amplification revealed in a low-emission scenario. Commun. Earth Environ. 3, 1–9 (2022).
Persad, G. G. & Caldeira, K. Divergent global-scale temperature effects from identical aerosols emitted in different regions. Nat. Commun. 2018 9:1 9, 1–9 (2018).
Freychet, N., Tett, S. F. B., Bollasina, M., Wang, K. C. & Hegerl, G. C. The Local Aerosol Emission Effect on Surface Shortwave Radiation and Temperatures. J. Adv. Model Earth Syst. 11, 806–817 (2019).
Semmler, T. et al. Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1. J. Adv. Model Earth Syst. 12, e2019MS002009 (2020).
Merrifield, A. L., Brunner, L., Lorenz, R., Humphrey, V. & Knutti, R. Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications. Geosci. Model Dev. 16, 4715–4747 (2023).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Kim, Y. H., Min, S. K., Gillett, N. P., Notz, D. & Malinina, E. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario. Nat. Commun. 2023 14:1 14, 1–8 (2023).
He, J. Y., Xie, B., Zhang, H. & Yu, X. C. Impacts of greenhouse gases and anthropogenic aerosols changes on surface air temperature in East Asia under different post-pandemic period emission scenarios. Adv. Clim. Change Res. 13, 884–895 (2022).
Fiedler, S. et al. Historical Changes and Reasons for Model Differences in Anthropogenic Aerosol Forcing in CMIP6. Geophys. Res. Lett. 50, e2023GL104848 (2023).
Liu, S. et al. Understanding of Aerosol–Climate Interactions in China: Aerosol Impacts on Solar Radiation, Temperature, Cloud, and Precipitation and Its Changes Under Future Climate and Emission Scenarios. Curr. Pollut. Rep. 36–51 (2019).
Bauer, S. E. et al. The Turning Point of the Aerosol Era. J. Adv. Model Earth Syst. 14, 1–17 (2022).
Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).
Schumacher, D. L. et al. Exacerbated summer European warming not captured by climate models neglecting long-term aerosol changes. Commun. Earth Environ. 2024 5:1 5, 1–14 (2024).
Dong, J. et al. Arctic sea ice loss warmed the temperate East Asian winter in the mid-Holocene. Commun. Earth Environ. 2024 5:1 5, 1–10 (2024).
Yang, X., Zeng, G., Zhang, G. & Li, C. Linkage between interannual variation of winter cold surge over East Asia and autumn sea ice over the Barents Sea. Theor. Appl Climatol. 144, 339–351 (2021).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Stevens, B. et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model Earth Syst. 5, 146–172 (2013).
Wang, Q. et al. The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: Formulation of an ocean general circulation model. Geosci. Model Dev. 7, 663–693 (2014).
Semmler, T. et al. AWI AWI-CM1.1MR model output prepared for CMIP6 CMIP historical. Earth System Grid Federation, accessed 12 January 2021 (2018).
Sidorenko, D. et al. Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate. Clim. Dyn. 44, 757–780 (2015).
Rackow, T. et al. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability. Clim. Dyn. 50, 2369–2394 (2018).
Lee, J. et al. Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3. Geosci. Model Dev. 17, 3919–3948 (2024).