Chylek, P. et al. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophys Res Lett. 49, e2022GL099371 (2022).

Article 

Google Scholar
 

Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 1–10 (2022).

Article 

Google Scholar
 

Johnson, N. C., Xie, S. P., Kosaka, Y. & Li, X. Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun. 9, 4–6 (2018).

Article 

Google Scholar
 

Van Oldenborgh, G. J., Haarsma, R., De Vries, H. & Allen, M. R. Cold extremes in North America vs. mild weather in Europe: The winter of 2013-14 in the context of a warming world. Bull. Am. Meteorol Soc. 96, 707–714 (2015).

Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).

Article 
CAS 

Google Scholar
 

Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).

Article 

Google Scholar
 

Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Surrogate climate-change scenarios for regional climate models. Geophys Res Lett. 23, 669–672 (1996).

Article 

Google Scholar
 

Brogli, R., Heim, C., Mensch, J., Sorland, S. L. & Schar, C. The pseudo-global-warming (PGW) approach: Methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses. Geosci. Model Dev. 16, 907–926 (2023).

Article 

Google Scholar
 

Vries, H., de, Lenderink, G., Meijgaard, E., van, Ulft, B. van & Rooy, W. de. Western Europe’s extreme July 2019 heatwave in a warmer world. Environ. Res.: Clim. 3, 035005 (2024).


Google Scholar
 

Sánchez Benítez, A., Goessling, H., Pithan, F., Semmler, T. & Jung, T. The July 2019 European heatwave in a warmer climate: Storyline scenarios with a coupled model using spectral nudging. J. Clim. 1–51 (2022).

Screen, J. A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Chang 4, 577–582 (2014).

Article 

Google Scholar
 

Philip, S. et al. A protocol for probabilistic extreme event attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).

Article 

Google Scholar
 

Shepherd, T. G. A Common Framework for Approaches to Extreme Event Attribution. Curr. Clim. Change Rep. 2, 28–38 (2016).

Article 

Google Scholar
 

Wehrli, K., Hauser, M. & Seneviratne, S. I. Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels. Earth Syst. Dyn. 11, 855–873 (2020).

Article 

Google Scholar
 

Athanase, M., Sánchez-Benítez, A., Goessling, H. F., Pithan, F. & Jung, T. Projected amplification of summer marine heatwaves in a warming Northeast Pacific Ocean. Commun. Earth Environ. 5, 1–12 (2024).

Article 

Google Scholar
 

van Garderen, L. & Mindlin, J. A storyline attribution of the 2011/2012 drought in Southeastern South America. Weather 77, 212–218 (2022).

Article 

Google Scholar
 

Pithan, F. et al. Nudging allows direct evaluation of coupled climate models with in-situ observations: A case study from the MOSAiC expedition. EGUsphere 1, 23 (2022).


Google Scholar
 

Gessner, C., Fischer, E. M., Beyerle, U. & Knutti, R. Developing Low-Likelihood Climate Storylines for Extreme Precipitation Over Central Europe. Earths Future 11, e2023EF003628 (2023).

Article 

Google Scholar
 

Athanase, M., Sánchez-Benítez, A., Monfort, E., Jung, T. & Goessling, H. F. How climate change intensified storm Boris’ extreme rainfall, revealed by near-real-time storylines. Commun. Earth Environ. 2024 5:1 5, 1–5 (2024).


Google Scholar
 

Yao, Y., Zhang, W., Luo, D., Zhong, L. & Pei, L. Seasonal Cumulative Effect of Ural Blocking Episodes on the Frequent Cold events in China during the Early Winter of 2020/21. Adv. Atmos. Sci. 31, 243–251 (2021).


Google Scholar
 

Dai, G., Li, C., Han, Z., Luo, D. & Yao, Y. The Nature and Predictability of the East Asian Extreme Cold Events of 2020/21. Adv. Atmos. Sci. (2021).

Yu, Y. et al. An Isentropic Mass Circulation View on the Extreme Cold Events in the 2020/21 Winter. Adv. Atmos. Sci. 39, 643–657 (2022).

Article 

Google Scholar
 

Zhang, X. et al. Extreme Cold Events from East Asia to North America in Winter 2020/21: Comparisons, Causes, and Future Implications. Adv. Atmos. Sci. 39, 553–565 (2022).

Article 

Google Scholar
 

Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys Res Lett. 39, 12807 (2012).

Article 

Google Scholar
 

Nakamura, N. & Huang, C. S. Y. Atmospheric blocking as a traffic jam in the jet stream. Science (1979) 361, 42–47 (2018).

CAS 

Google Scholar
 

Kautz, L.-A. et al. Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review. Weather Clim. Dyn. 3, 305–336 (2022).

Article 

Google Scholar
 

Luo, D. et al. Weakened Potential Vorticity Barrier Linked to Recent Winter Arctic Sea Ice Loss and Midlatitude Cold Extremes. J. Clim. 32, 4235–4261 (2019).

Article 

Google Scholar
 

Luo, D., Chen, X., Dai, A. & Simmonds, I. Changes in Atmospheric Blocking Circulations Linked with Winter Arctic Warming: A New Perspective. J. Clim. 31, 7661–7678 (2018).

Article 

Google Scholar
 

Barnes, E. A. & Hartmann, D. L. Influence of eddy-driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations. Geophys. Res. Lett. 37, GL045700 (2010).

Scaife, A. A., Woollings, T., Knight, J., Martin, G. & Hinton, T. Atmospheric blocking and mean biases in climate models. J. Clim. 23, 6143–6152 (2010).

Article 

Google Scholar
 

Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of Present and Future European Temperature Extremes on the Location of Atmospheric Blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).

Tibaldi, S. & Molteni, F. On the operational predictability of blocking. Tellus, Ser. A 42, 343–365 (1990).

Article 

Google Scholar
 

Blackport, R., Sigmond, M. & Screen, J. A. Models and observations agree on fewer and milder midlatitude cold extremes even over recent decades of rapid Arctic warming. Sci. Adv. 10, eadp1346 (2024).

Article 

Google Scholar
 

Cohen, J., Francis, J. A. & Pfeiffer, K. Anomalous Arctic warming linked with severe winter weather in Northern Hemisphere continents. Commun. Earth Environ. 2024 5:1 5, 1–13 (2024).


Google Scholar
 

Cohen, J., Agel, L., Barlow, M., Garfinkel, C. I. & White, I. Arctic change reduces risk of cold extremes: Response. Science (1979) 375, 729–730 (2022).


Google Scholar
 

Hong, Y. et al. From peak to plummet: impending decline of the warm Arctic-cold continents phenomenon. NPJ Clim. Atmos. Sci. 7, 1–5 (2024).

Article 

Google Scholar
 

Wu, B., Li, Z., Francis, J. A. & Ding, S. A recent weakening of winter temperature association between Arctic and Asia. Environ. Res. Lett. 17, 034030 (2022).

Article 
CAS 

Google Scholar
 

Cohen, J., Zhang, X., Francis, J. & Al, E. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang 28, 7917–7932 (2019).


Google Scholar
 

Notz, D. & Community, S. Arctic Sea Ice in CMIP6. Geophys Res Lett. 47, e2019GL086749 (2020).

Article 

Google Scholar
 

Ono, J., Watanabe, M., Komuro, Y., Tatebe, H. & Abe, M. Enhanced Arctic warming amplification revealed in a low-emission scenario. Commun. Earth Environ. 3, 1–9 (2022).

Article 

Google Scholar
 

Persad, G. G. & Caldeira, K. Divergent global-scale temperature effects from identical aerosols emitted in different regions. Nat. Commun. 2018 9:1 9, 1–9 (2018).


Google Scholar
 

Freychet, N., Tett, S. F. B., Bollasina, M., Wang, K. C. & Hegerl, G. C. The Local Aerosol Emission Effect on Surface Shortwave Radiation and Temperatures. J. Adv. Model Earth Syst. 11, 806–817 (2019).

Article 

Google Scholar
 

Semmler, T. et al. Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1. J. Adv. Model Earth Syst. 12, e2019MS002009 (2020).

Article 

Google Scholar
 

Merrifield, A. L., Brunner, L., Lorenz, R., Humphrey, V. & Knutti, R. Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications. Geosci. Model Dev. 16, 4715–4747 (2023).

Article 

Google Scholar
 

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

Kim, Y. H., Min, S. K., Gillett, N. P., Notz, D. & Malinina, E. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario. Nat. Commun. 2023 14:1 14, 1–8 (2023).


Google Scholar
 

He, J. Y., Xie, B., Zhang, H. & Yu, X. C. Impacts of greenhouse gases and anthropogenic aerosols changes on surface air temperature in East Asia under different post-pandemic period emission scenarios. Adv. Clim. Change Res. 13, 884–895 (2022).

Article 

Google Scholar
 

Fiedler, S. et al. Historical Changes and Reasons for Model Differences in Anthropogenic Aerosol Forcing in CMIP6. Geophys. Res. Lett. 50, e2023GL104848 (2023).

Liu, S. et al. Understanding of Aerosol–Climate Interactions in China: Aerosol Impacts on Solar Radiation, Temperature, Cloud, and Precipitation and Its Changes Under Future Climate and Emission Scenarios. Curr. Pollut. Rep. 36–51 (2019).

Bauer, S. E. et al. The Turning Point of the Aerosol Era. J. Adv. Model Earth Syst. 14, 1–17 (2022).

Article 

Google Scholar
 

Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).

Article 
CAS 

Google Scholar
 

Schumacher, D. L. et al. Exacerbated summer European warming not captured by climate models neglecting long-term aerosol changes. Commun. Earth Environ. 2024 5:1 5, 1–14 (2024).


Google Scholar
 

Dong, J. et al. Arctic sea ice loss warmed the temperate East Asian winter in the mid-Holocene. Commun. Earth Environ. 2024 5:1 5, 1–10 (2024).


Google Scholar
 

Yang, X., Zeng, G., Zhang, G. & Li, C. Linkage between interannual variation of winter cold surge over East Asia and autumn sea ice over the Barents Sea. Theor. Appl Climatol. 144, 339–351 (2021).

Article 

Google Scholar
 

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

Article 

Google Scholar
 

Stevens, B. et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model Earth Syst. 5, 146–172 (2013).

Article 

Google Scholar
 

Wang, Q. et al. The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: Formulation of an ocean general circulation model. Geosci. Model Dev. 7, 663–693 (2014).

Article 
CAS 

Google Scholar
 

Semmler, T. et al. AWI AWI-CM1.1MR model output prepared for CMIP6 CMIP historical. Earth System Grid Federation, accessed 12 January 2021 (2018).

Sidorenko, D. et al. Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate. Clim. Dyn. 44, 757–780 (2015).

Article 

Google Scholar
 

Rackow, T. et al. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability. Clim. Dyn. 50, 2369–2394 (2018).

Article 

Google Scholar
 

Lee, J. et al. Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3. Geosci. Model Dev. 17, 3919–3948 (2024).

Article 

Google Scholar