1.EXECUTIVE SUMMARY1.1.Introduction to gas separation membranes for decarbonization1.2.Gas separation membrane markets: Maturities and opportunities1.3.Leading polymer materials for gas separation membranes1.4.Material developments for gas separation membranes1.5.Commercial maturity of materials for gas separation membranes applications in this report1.6.Key players in gas separation membranes by material1.7.Developing new membrane materials: Key trends1.8.Overview of gas separation membranes for decarbonization applications1.9.Gas separation membranes for biogas upgrading1.10.Gas separation membranes for natural gas processing1.11.Gas separation membranes for post-combustion carbon capture1.12.Gas separation membranes for hydrogen1.13.Gas separation membranes for helium1.14.Overview of gas separation membranes in decarbonization1.15.Main gas separation polymer membrane manufacturers1.16.Recent industry progress in gas separation membranes for decarbonization1.17.IDTechEx forecast: Revenue from gas separation membranes1.18.Access More With an IDTechEx Subscription2.INTRODUCTION2.1.Introduction to gas separation membranes for decarbonization2.2.Gas separation membrane markets: Maturities and opportunities2.3.Why use membranes for gas separation?2.4.Membranes: Operating principles2.5.Leading polymer materials for gas separation membranes2.6.Polymeric membrane module design: Hollow fibre vs spiral wound2.7.Material developments for gas separation membranes2.8.Comparing gas separation membrane materials2.9.Polymeric-based membranes for gas separation: Overview2.10.Ceramic-based membranes for gas separation: Overview2.11.Metallic-based membranes for gas separation: Overview2.12.Composite membranes for gas separation: Overview2.13.Asymmetric membranes vs TFC membranes2.14.Overcoming the Robeson limit: Achieving maximum selectivity and permeability2.15.Developing new membrane materials: Key trends2.16.Polymer membranes usually require multi-stage processes2.17.Overview of gas separation membranes in decarbonization3.GAS SEPARATION MEMBRANE MANUFACTURING3.1.Leading gas separation membrane manufacturers3.1.1.History of gas separation membranes3.1.2.Air Liquide3.1.3.Air Products3.1.4.Honeywell UOP3.1.5.UBE3.1.6.Evonik3.1.7.SLB3.1.8.MTR (Membrane Technology and Research)3.1.9.Airrane3.1.10.Main gas separation polymer membrane manufacturers3.1.11.2024/2025 Industry News: Gas Separation Membranes3.2.Membrane fabrication techniques3.2.1.Conventional membrane manufacturing: Phase inversion3.2.2.Single asymmetric membrane vs dual layer membrane3.2.3.Hybrid NIPS and TIPS gas separation membrane fabrication3.2.4.Manufacturing thin film composites3.2.5.Manufacturing organic hybrid membranes: SK Innovation3.2.6.Manufacturing carbon membranes: Toray4.BIOGAS UPGRADING4.1.Introduction to biogas upgrading4.2.Biomethane markets (renewable natural gas markets)4.3.Barrier: Biomethane production more expensive than natural gas4.4.Biomethane/RNG market commentary4.5.Membranes have become the favoured technology for biogas upgrading4.6.Main players in biogas upgrading gas separation membranes4.7.Market share of biogas upgrading membranes4.8.Biomethane: Main plant players4.9.Desirable properties for biogas upgrading membranes4.10.Evonik: 3-stage membrane process for biogas upgrading4.11.Additional stages in membrane biogas upgrading4.12.Hybrid process: Membranes and cryogenic for upgrading landfill gas4.13.Emerging materials for biogas upgrading membranes4.14.Alternatives to membranes: Developments in biogas upgrading technologies5.CCUS5.1.Introduction5.1.1.What is Carbon Capture, Utilization and Storage (CCUS)?5.1.2.Why CCUS and why now?5.1.3.The CCUS value chain5.1.4.Main CO2 capture systems5.1.5.Development of the CCUS business model5.1.6.CCUS business model: full value chain5.1.7.CCUS business model: Networks and hub model5.1.8.CCUS business model: Partial-chain5.1.9.Main CO2 capture technologies5.1.10.Comparison of CO2 capture technologies5.1.11.Amine solvents dominate carbon capture but there are opportunities for membranes5.1.12.No single carbon capture technology will be the best across all applications5.1.13.Carbon capture technology providers for existing large-scale projects5.1.14.Technology readiness levels of carbon capture technologies5.2.Gas separation membranes for natural gas sweetening5.2.1.Introduction to natural gas processing with carbon capture5.2.2.Development of membranes for natural gas processing5.2.3.Market share of natural gas separation membranes5.2.4.Gas separation membranes for natural gas sweetening5.2.5.Natural gas processing: spiral wound and hollow fiber membranes5.2.6.H2S considerations in CH4/CO2 separation for natural gas sweetening5.2.7.Overview of largest natural gas processing CCUS projects5.2.8.Fluoropolymer gas separation membranes for natural gas processing5.3.Gas separation membranes for post-combustion carbon capture5.3.1.Post-combustion CO₂ capture5.3.2.Membranes for post-combustion CO2 capture5.3.3.When should alternatives to solvent-based carbon capture be used?5.3.4.Overcoming the Robeson limit for post-combustion carbon capture5.3.5.Leading players in membrane-based post-combustion capture5.3.6.Polymer membranes for post-combustion carbon capture: PEG membranes5.3.7.Economics of polymer membranes for post-combustion capture5.3.8.Increasing CO2 recovery rates for polymer membranes: MTR example5.3.9.Polymer membranes for post-combustion carbon capture: emerging materials5.3.10.Facilitated transport membranes (FTM) for post-combustion carbon capture5.3.11.Energy demand of post-combustion carbon capture technologies5.3.12.Economics of FTMs for post-combustion carbon capture5.3.13.Facilitated transport membrane materials for post-combustion carbon capture5.3.14.Challenges and innovations for membranes in post-combustion capture5.3.15.2024/2025 Industry News: Membranes for post-combustion capture5.3.16.Benchmarking membranes for post-combustion capture5.3.17.Graphene membranes for post-combustion carbon capture: Emerging material5.3.18.MOF membranes for post-combustion carbon capture: Emerging material5.4.Gas separation membranes for other CCUS applications (oxyfuel, EOR, DAC)5.4.1.Oxy-fuel combustion CO₂ capture5.4.2.Oxygen separation technologies for oxy-fuel combustion5.4.3.What is CO2-EOR?5.4.4.What happens to the injected CO2?5.4.5.Membrane technology for EOR5.4.6.CO2 capture/separation mechanisms in DAC5.4.7.Membranes for direct air capture5.4.8.IDTechEx CCUS Portfolio6.HYDROGEN6.1.Overview of the hydrogen value chain6.1.1.State of the hydrogen market today6.1.2.Major drivers for low-carbon hydrogen production & adoption6.1.3.Key legislation & funding mechanisms driving hydrogen development6.1.4.The colors of hydrogen6.1.5.Hydrogen value chain overview6.1.6.Blue hydrogen: Main syngas production technologies6.1.7.Blue hydrogen production – SMR with CCUS example6.1.8.Cost comparison of different types of hydrogen6.1.9.Overview of hydrogen storage6.1.10.Overview of hydrogen distribution6.1.11.Hydrogen carriers – overview6.1.12.Hydrogen carriers – liquid hydrogen (LH2) vs ammonia & LOHCs6.1.13.Overview of hydrogen applications6.1.14.Hydrogen purity requirements6.2.Gas separation membranes for established hydrogen applications6.2.1.Gas separation membranes used for hydrogen separation – overview6.2.2.Common gas separations where hydrogen is used & competing technologies6.2.3.Example application – hydrogen recovery from ammonia reactor purge gas6.2.4.Example application – hydrogen recovery in refinery applications6.2.5.Key gas separation membrane players in established hydrogen separations6.2.6.Market share of hydrogen separation membranes in mature applications6.3.Gas separation membranes in emerging hydrogen applications (blue hydrogen/pre-combustion carbon capture, hydrogen deblending, ammonia cracking)6.3.1.Emerging opportunities for gas separation membranes in hydrogen6.3.2.Key membrane players targeting emerging hydrogen applications6.3.3.Gas separation membranes in blue hydrogen production (pre-combustion capture)6.3.4.Honeywell UOP – membranes in CO2 fractionation for blue hydrogen6.3.5.Air Liquide hybrid technology for CCUS: Blue hydrogen6.3.6.Hydrogen blending & deblending with natural gas6.3.7.Hydrogen deblending – applicability of membrane separations6.3.8.Hydrogen deblending – Linde & Evonik system case study (1)6.3.9.Hydrogen deblending – Linde & Evonik system case study (2)6.3.10.Hydrogen deblending – National Gas case study (UK)6.3.11.Electrochemical hydrogen separation – competitor to gas separation membranes6.3.12.Electrochemical hydrogen separation – key players6.3.13.Membranes in ammonia cracking6.4.Innovations in polymer membrane materials for hydrogen separation6.4.1.Key R&D areas for gas separation membranes6.4.2.Polymer membrane developments for hydrogen separation – DiviGas6.4.3.Polymer membrane developments for hydrogen separation – DiviGas6.4.4.Polymer membrane developments for hydrogen separation – Membravo6.4.5.Other commercial developments for polymer membranes in hydrogen separation6.4.6.Polymers of intrinsic microporosity for hydrogen separation – Osmoses6.4.7.Key academic research areas for H2 separation – mixed matrix membranes6.4.8.Case study – novel mixed matrix membrane (MMM) for hydrogen6.4.9.Key academic research areas for H2 separation – carbon molecular sieves6.4.10.Case study – novel hybrid boronitride-CMS membrane for hydrogen6.5.Metallic membranes for hydrogen purification in ammonia cracking & other applications6.5.1.Metallic membranes for hydrogen purification – overview6.5.2.Metallic membranes for hydrogen purification – materials6.5.3.Key application markets for metallic membranes6.5.4.Key metallic membrane players – Hydrogen Mem-Tech (1)6.5.5.Key metallic membrane players – Hydrogen Mem-Tech (2)6.5.6.Key metallic membrane players – H2SITE (1)6.5.7.Key metallic membrane players – H2SITE (2)6.5.8.Key metallic membrane players – H2SITE (3)6.5.9.Other players developing metallic composite membrane systems6.5.10.Other players developing metallic composite membrane systems6.5.11.Other players developing metallic composite membrane systems6.5.12.Other players developing metallic composite membrane systems6.5.13.IDTechEx Hydrogen & Fuel Cell Research Portfolio7.HELIUM7.1.Helium markets7.2.Typical helium supply chain and separation processes7.3.Three industrial helium separation technologies: Cryogenic, PSA and membranes7.4.Hollow fiber membranes are a popular choice for helium separation7.5.Different types of hollow fiber membranes are available for helium separation7.6.Generon’s membranes + PSA technology can recover helium to >99.5% purity7.7.Grasys develops and provides membrane technology for helium separation7.8.Air Liquide’s advanced separation technology uses membranes and PSA7.9.Linde offers cryogenic, membrane, and PSA-based separation technologies7.10.UGS offers fully skidded membrane-based helium separation systems7.11.Membrane and PSA methods are more economical than cryogenic separation7.12.Helium Market 2025-2035: Applications, Alternatives, and Reclamation8.MARKET FORECASTS8.1.Gas separation membrane market forecasts8.1.1.Scope for IDTechEx gas separation membrane forecasts8.1.2.Revenue from gas separation membranes: 2026-2036 (million US$)8.1.3.Area of membrane material: 2026-2036 (million m2)8.1.4.Gas separation membrane market forecasts discussion8.2.Biomethane market forecasts8.2.1.Global biomethane production forecast segmented by region: 2013-2036 (billion cubic meters)8.2.2.Global biomethane production forecast discussion8.2.3.% of biogas upgrading plants using membrane separation technologies: 2013-20368.2.4.Membrane biogas upgrading forecast: 2025-2036 (billion cubic meters of biomethane produced)8.3.Natural gas market forecasts8.3.1.Global natural gas production forecast: 1990-2036 (billion cubic meters)8.3.2.% of natural gas processing plants using membrane separation technologies: 2000-20368.3.3.Membrane natural gas processing forecast: 2025-2036 (billion cubic meters of natural gas)8.4.Membranes for post-combustion carbon capture market forecasts8.4.1.Membrane post-combustion capture forecast: 2025-2036 (million tonnes per annum of CO2 captured)8.4.2.Membrane post-combustion capture forecast discussion8.5.Membranes for hydrogen production market forecasts (ammonia production, refining & petrochemical, methanol production, and blue hydrogen production)8.5.1.Membrane hydrogen production forecast: 2024-2036 (million tonnes per annum of H2)8.5.2.Membrane hydrogen production forecast discussion9.COMPANY PROFILES9.1.Links to company profiles on the IDTechEx portal