IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

Ultee, L., Coats, S. & Mackay, J. Glacial runoff buffers droughts through the 21st century. Earth Syst. Dyn. 13, 935–959 (2022).

Article 

Google Scholar
 

Furian, W., Maussion, F. & Schneider, C. Projected 21st-century glacial lake evolution in High Mountain Asia. Front. Earth Sci. 10, 821798 (2022).

Article 

Google Scholar
 

Compagno, L., Huss, M., Zekollari, H., Miles, E. S. & Farinotti, D. Future growth and decline of High Mountain Asia’s ice-dammed lakes and associated risk. Commun. Earth Environ. 3, 191 (2022).

Article 

Google Scholar
 

Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).

Article 
CAS 

Google Scholar
 

Marzeion, B., Kaser, G., Maussion, F. & Champollion, N. Limited influence of climate change mitigation on short-term glacier mass loss. Nat. Clim. Change 8, 305–308 (2018).

Article 

Google Scholar
 

Forster, P. M. et al. Indicators of global climate change 2023: annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 16, 2625–2658 (2024).

Article 

Google Scholar
 

IPCC Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

Schleussner, C.-F., Ganti, G., Rogelj, J. & Gidden, M. J. An emission pathway classification reflecting the Paris Agreement climate objectives. Commun. Earth Environ. 3, 135 (2022).

Article 

Google Scholar
 

Pfleiderer, P., Schleussner, C.-F. & Sillmann, J. Limited reversal of regional climate signals in overshoot scenarios. Environ. Res.: Clim. 3, 015005 (2024).


Google Scholar
 

Marshall, A., Grubert, E. & Warix, S. Temperature overshoot would have lasting impacts on hydrology and water resources. Water Resour. Res. 61, e2024WR037950 (2025).

Article 

Google Scholar
 

Schleussner, C.-F. et al. Overconfidence in climate overshoot. Nature 634, 366–373 (2024).

Article 
CAS 

Google Scholar
 

Lacroix, F., Burger, F. A., Silvy, Y., Schleussner, C.-F. & Frölicher, T. L. Persistently elevated high-latitude ocean temperatures and global sea level following temporary temperature overshoots. Earth’s Future 12, e2024EF004862 (2024).

Article 

Google Scholar
 

Mengel, M., Nauels, A., Rogelj, J. & Schleussner, C.-F. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9, 601 (2018).

Article 

Google Scholar
 

Wunderling, N. et al. Global warming overshoots increase risks of climate tipping cascades in a network model. Nat. Clim. Change 13, 75–82 (2023).

Article 

Google Scholar
 

Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic ice sheet. Nature 585, 538–544 (2020).

Article 
CAS 

Google Scholar
 

Höning, D. et al. Multistability and transient response of the Greenland ice sheet to anthropogenic CO2 emissions. Geophys. Res. Lett. 50, e2022GL101827 (2023).

Article 

Google Scholar
 

Möller, T. et al. Achieving net zero greenhouse gas emissions critical to limit climate tipping risks. Nat. Commun. 15, 6192 (2024).

Article 

Google Scholar
 

Lenton, T. M. et al. (eds) The Global Tipping Points Report 2023 (Univ. of Exeter, 2023).

Solomina, O. N. et al. Glacier fluctuations during the past 2000 years. Quat. Sci. Rev. 149, 61–90 (2016).

Article 

Google Scholar
 

Sobolewski, L. et al. The evolving volcano–ice interactions of Crater Glacier, Mount St. Helens, Washington (USA). Bull. Volcanol. 85, 22 (2023).

Article 

Google Scholar
 

Zekollari, H., Huss, M. & Farinotti, D. On the imbalance and response time of glaciers in the European Alps. Geophys. Res. Lett. 47, e2019GL085578 (2020).

Article 

Google Scholar
 

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

Article 

Google Scholar
 

Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

Article 

Google Scholar
 

Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).

Article 

Google Scholar
 

Terhaar, J., Frölicher, T. L., Aschwanden, M. T., Friedlingstein, P. & Joos, F. Adaptive emission reduction approach to reach any global warming target. Nat. Clim. Change 12, 1136–1142 (2022).

Article 

Google Scholar
 

Maussion, F. et al. The Open Global Glacier Model (OGGM) v1.1. Geosci. Model Dev. 12, 909–931 (2019).

Article 

Google Scholar
 

Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

Article 

Google Scholar
 

Jansson, P., Hock, R. & Schneider, T. The concept of glacier storage: a review. J. Hydrol. 282, 116–129 (2003).

Article 

Google Scholar
 

Harrison, W. How do glaciers respond to climate? Perspectives from the simplest models. J. Glaciol. 59, 949–960 (2013).

Article 

Google Scholar
 

Wimberly, F. et al. Inter-model differences in 21st century glacier runoff for the world’s major river basins. Cryosphere 19, 1491–1511 (2025).

Article 

Google Scholar
 

Hanus, S. et al. Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments. Geosci. Model Dev. 17, 5123–5144 (2024).

Article 

Google Scholar
 

Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

Article 
CAS 

Google Scholar
 

Keller, D. P. et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geosci. Model Dev. 11, 1133–1160 (2018).

Article 
CAS 

Google Scholar
 

Schwinger, J., Asaadi, A., Goris, N. & Lee, H. Possibility for strong Northern Hemisphere high-latitude cooling under negative emissions. Nat. Commun. 13, 1095 (2022).

Article 
CAS 

Google Scholar
 

Santana-Falcón, Y. et al. Irreversible loss in marine ecosystem habitability after a temperature overshoot. Commun. Earth Environ. 4, 343 (2023).

Article 

Google Scholar
 

Knutson, T. R., Zeng, F. & Wittenberg, A. T. Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Clim. 26, 8709–8743 (2013).

Article 

Google Scholar
 

Scoccimarro, E., Gualdi, S., Bellucci, A., Zampieri, M. & Navarra, A. Heavy precipitation events in a warmer climate: results from CMIP5 models. J. Clim. 26, 7902–7911 (2013).

Article 

Google Scholar
 

Rugenstein, M. et al. LongRunMIP: motivation and design for a large collection of millennial-length AOGCM simulations. Bull. Am. Meteorol. Soc. 100, 2551–2570 (2019).

Article 

Google Scholar
 

King, A. D., Lane, T. P., Henley, B. J. & Brown, J. R. Global and regional impacts differ between transient and equilibrium warmer worlds. Nat. Clim. Change 10, 42–47 (2020).

Article 

Google Scholar
 

King, A. D. et al. Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5. Earth Syst. Dyn. 15, 1353–1383 (2024).

Article 

Google Scholar
 

Pfeffer, W. A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res.: Earth Surf. 112, F03S25 (2007).


Google Scholar
 

Armstrong McKay, D. I. et al. Exceeding 1.5∘C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

Article 

Google Scholar
 

Reed, B., Green, J. M., Jenkins, A. & Gudmundsson, G. H. Recent irreversible retreat phase of Pine Island Glacier. Nat. Clim. Change 14, 75–81 (2024).

Article 

Google Scholar
 

Gabbi, J., Huss, M., Bauder, A., Cao, F. & Schwikowski, M. The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier. Cryosphere 9, 1385–1400 (2015).

Article 

Google Scholar
 

Naegeli, K. & Huss, M. Sensitivity of mountain glacier mass balance to changes in bare-ice albedo. Ann. Glaciol. 58, 119–129 (2017).

Article 

Google Scholar
 

Di Mauro, B. et al. Glacier algae foster ice–albedo feedback in the European Alps. Sci. Rep. 10, 4739 (2020).

Article 

Google Scholar
 

Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).

Article 

Google Scholar
 

Buri, P., Pellicciotti, F., Steiner, J. F., Miles, E. S. & Immerzeel, W. W. A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers. Ann. Glaciol. 57, 199–211 (2016).

Article 

Google Scholar
 

Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers (Academic, 2010).

Husson, L., Bodin, T., Spada, G., Choblet, G. & Kreemer, C. Bayesian surface reconstruction of geodetic uplift rates: mapping the global fingerprint of glacial isostatic adjustment. J. Geodynamics 122, 25–40 (2018).

Article 

Google Scholar
 

Bolibar, J., Rabatel, A., Gouttevin, I., Zekollari, H. & Galiez, C. Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning. Nat. Commun. 13, 409 (2022).

Article 
CAS 

Google Scholar
 

Gilbert, A. et al. Sensitivity of Barnes ice cap, Baffin Island, Canada, to climate state and internal dynamics. J. Geophys. Res.: Earth Surf. 121, 1516–1539 (2016).

Article 

Google Scholar
 

Malles, J.-H. et al. Exploring the impact of a frontal ablation parameterization on projected 21st-century mass change for Northern Hemisphere glaciers. J. Glaciol. 69, 1317–1332 (2023).

Article 

Google Scholar
 

Schuster, L. et al. lilianschuster/glacier-model-projections-until2300: glacier projection figures for the state of the cryosphere 2023 and 2024 report. Zenodo https://doi.org/10.5281/zenodo.10055416 (2024).

Compagno, L., Eggs, S., Huss, M., Zekollari, H. & Farinotti, D. Brief communication: do 1.0, 1.5, or 2.0∘C matter for the future evolution of Alpine glaciers? Cryosphere 15, 2593–2599 (2021).

Article 

Google Scholar
 

Kraaijenbrink, P. D., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change 11, 591–597 (2021).

Article 

Google Scholar
 

Wiersma, P. et al. Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff. Hydrol. Earth Syst. Sci. 26, 5971–5986 (2022).

Article 

Google Scholar
 

Miles, E. et al. Health and sustainability of glaciers in High Mountain Asia. Nat. Commun. 12, 2868 (2021).

Article 
CAS 

Google Scholar
 

Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).

Article 
CAS 

Google Scholar
 

Zekollari, H. et al. Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations. Cryosphere 18, 5045–5066 (2024).

Article 

Google Scholar
 

Aguayo, R. et al. Unravelling the sources of uncertainty in glacier runoff projections in the Patagonian Andes (40–56∘S). Cryosphere 18, 5383–5406 (2024).

Article 

Google Scholar
 

Caro, A. et al. Hydrological response of Andean catchments to recent glacier mass loss. Cryosphere 18, 2487–2507 (2024).

Article 

Google Scholar
 

Maussion, F. et al. OGGM/oggm: v1.6.1. Zenodo https://doi.org/10.5281/zenodo.8287580 (2023).

Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

Article 

Google Scholar
 

Huss, M. & Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res.: Earth Surf. 117, F04010 (2012).


Google Scholar
 

Zekollari, H., Huss, M. & Farinotti, D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. Cryosphere 13, 1125–1146 (2019).

Article 

Google Scholar
 

Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

Article 
CAS 

Google Scholar
 

Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

Article 
CAS 

Google Scholar
 

Lange, S. et al. WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0). Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Repository https://doi.org/10.48364/ISIMIP.342217 (2021).

Cogley, J. G. et al. Glossary of Glacier Mass Balance and Related Terms. IHP-VII Technical Documents in Hydrology No. 86, Contribution No. 2 (International Association of Cryospheric Sciences, 2011).

Marzeion, B. et al. Partitioning the uncertainty of ensemble projections of global glacier mass change. Earth’s Future 8, e2019EF001470 (2020).

Article 

Google Scholar
 

Major river basins of the world. GRDC https://grdc.bafg.de/products/basin_layers/major_rivers/ (2020).

Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).


Google Scholar
 

Silvy, Y. et al. AERA-MIP: emission pathways, remaining budgets, and carbon cycle dynamics compatible with 1.5 and 2∘C global warming stabilization. Earth Syst. Dyn. 15, 1591–1628 (2024).

Article 

Google Scholar
 

van Vuuren, D. P. et al. The Representative Concentration Pathways: an overview. Clim. Change 109, 5–31 (2011).

Article 

Google Scholar
 

Kadow, C., Hall, D. M. & Ulbrich, U. Artificial intelligence reconstructs missing climate information. Nat. Geosci. 13, 408–413 (2020).

Article 
CAS 

Google Scholar
 

Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 3, 54 (2015).

Article 

Google Scholar
 

Schuster, L., Rounce, D. R. & Maussion, F. Glacier projections sensitivity to temperature-index model choices and calibration strategies. Ann. Glaciol. 64, 293–308 (2023).

Article 

Google Scholar
 

Schuster, L. et al. Code and data to: ‘Irreversible glacier change and trough water for centuries after overshooting 1.5∘C’ (v1.0). Zenodo https://doi.org/10.5281/zenodo.14247718 (2024).