IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Ultee, L., Coats, S. & Mackay, J. Glacial runoff buffers droughts through the 21st century. Earth Syst. Dyn. 13, 935–959 (2022).
Furian, W., Maussion, F. & Schneider, C. Projected 21st-century glacial lake evolution in High Mountain Asia. Front. Earth Sci. 10, 821798 (2022).
Compagno, L., Huss, M., Zekollari, H., Miles, E. S. & Farinotti, D. Future growth and decline of High Mountain Asia’s ice-dammed lakes and associated risk. Commun. Earth Environ. 3, 191 (2022).
Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).
Marzeion, B., Kaser, G., Maussion, F. & Champollion, N. Limited influence of climate change mitigation on short-term glacier mass loss. Nat. Clim. Change 8, 305–308 (2018).
Forster, P. M. et al. Indicators of global climate change 2023: annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 16, 2625–2658 (2024).
IPCC Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).
Schleussner, C.-F., Ganti, G., Rogelj, J. & Gidden, M. J. An emission pathway classification reflecting the Paris Agreement climate objectives. Commun. Earth Environ. 3, 135 (2022).
Pfleiderer, P., Schleussner, C.-F. & Sillmann, J. Limited reversal of regional climate signals in overshoot scenarios. Environ. Res.: Clim. 3, 015005 (2024).
Marshall, A., Grubert, E. & Warix, S. Temperature overshoot would have lasting impacts on hydrology and water resources. Water Resour. Res. 61, e2024WR037950 (2025).
Schleussner, C.-F. et al. Overconfidence in climate overshoot. Nature 634, 366–373 (2024).
Lacroix, F., Burger, F. A., Silvy, Y., Schleussner, C.-F. & Frölicher, T. L. Persistently elevated high-latitude ocean temperatures and global sea level following temporary temperature overshoots. Earth’s Future 12, e2024EF004862 (2024).
Mengel, M., Nauels, A., Rogelj, J. & Schleussner, C.-F. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9, 601 (2018).
Wunderling, N. et al. Global warming overshoots increase risks of climate tipping cascades in a network model. Nat. Clim. Change 13, 75–82 (2023).
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic ice sheet. Nature 585, 538–544 (2020).
Höning, D. et al. Multistability and transient response of the Greenland ice sheet to anthropogenic CO2 emissions. Geophys. Res. Lett. 50, e2022GL101827 (2023).
Möller, T. et al. Achieving net zero greenhouse gas emissions critical to limit climate tipping risks. Nat. Commun. 15, 6192 (2024).
Lenton, T. M. et al. (eds) The Global Tipping Points Report 2023 (Univ. of Exeter, 2023).
Solomina, O. N. et al. Glacier fluctuations during the past 2000 years. Quat. Sci. Rev. 149, 61–90 (2016).
Sobolewski, L. et al. The evolving volcano–ice interactions of Crater Glacier, Mount St. Helens, Washington (USA). Bull. Volcanol. 85, 22 (2023).
Zekollari, H., Huss, M. & Farinotti, D. On the imbalance and response time of glaciers in the European Alps. Geophys. Res. Lett. 47, e2019GL085578 (2020).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).
Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).
Terhaar, J., Frölicher, T. L., Aschwanden, M. T., Friedlingstein, P. & Joos, F. Adaptive emission reduction approach to reach any global warming target. Nat. Clim. Change 12, 1136–1142 (2022).
Maussion, F. et al. The Open Global Glacier Model (OGGM) v1.1. Geosci. Model Dev. 12, 909–931 (2019).
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
Jansson, P., Hock, R. & Schneider, T. The concept of glacier storage: a review. J. Hydrol. 282, 116–129 (2003).
Harrison, W. How do glaciers respond to climate? Perspectives from the simplest models. J. Glaciol. 59, 949–960 (2013).
Wimberly, F. et al. Inter-model differences in 21st century glacier runoff for the world’s major river basins. Cryosphere 19, 1491–1511 (2025).
Hanus, S. et al. Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments. Geosci. Model Dev. 17, 5123–5144 (2024).
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).
Keller, D. P. et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geosci. Model Dev. 11, 1133–1160 (2018).
Schwinger, J., Asaadi, A., Goris, N. & Lee, H. Possibility for strong Northern Hemisphere high-latitude cooling under negative emissions. Nat. Commun. 13, 1095 (2022).
Santana-Falcón, Y. et al. Irreversible loss in marine ecosystem habitability after a temperature overshoot. Commun. Earth Environ. 4, 343 (2023).
Knutson, T. R., Zeng, F. & Wittenberg, A. T. Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Clim. 26, 8709–8743 (2013).
Scoccimarro, E., Gualdi, S., Bellucci, A., Zampieri, M. & Navarra, A. Heavy precipitation events in a warmer climate: results from CMIP5 models. J. Clim. 26, 7902–7911 (2013).
Rugenstein, M. et al. LongRunMIP: motivation and design for a large collection of millennial-length AOGCM simulations. Bull. Am. Meteorol. Soc. 100, 2551–2570 (2019).
King, A. D., Lane, T. P., Henley, B. J. & Brown, J. R. Global and regional impacts differ between transient and equilibrium warmer worlds. Nat. Clim. Change 10, 42–47 (2020).
King, A. D. et al. Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5. Earth Syst. Dyn. 15, 1353–1383 (2024).
Pfeffer, W. A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res.: Earth Surf. 112, F03S25 (2007).
Armstrong McKay, D. I. et al. Exceeding 1.5∘C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
Reed, B., Green, J. M., Jenkins, A. & Gudmundsson, G. H. Recent irreversible retreat phase of Pine Island Glacier. Nat. Clim. Change 14, 75–81 (2024).
Gabbi, J., Huss, M., Bauder, A., Cao, F. & Schwikowski, M. The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier. Cryosphere 9, 1385–1400 (2015).
Naegeli, K. & Huss, M. Sensitivity of mountain glacier mass balance to changes in bare-ice albedo. Ann. Glaciol. 58, 119–129 (2017).
Di Mauro, B. et al. Glacier algae foster ice–albedo feedback in the European Alps. Sci. Rep. 10, 4739 (2020).
Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).
Buri, P., Pellicciotti, F., Steiner, J. F., Miles, E. S. & Immerzeel, W. W. A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers. Ann. Glaciol. 57, 199–211 (2016).
Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers (Academic, 2010).
Husson, L., Bodin, T., Spada, G., Choblet, G. & Kreemer, C. Bayesian surface reconstruction of geodetic uplift rates: mapping the global fingerprint of glacial isostatic adjustment. J. Geodynamics 122, 25–40 (2018).
Bolibar, J., Rabatel, A., Gouttevin, I., Zekollari, H. & Galiez, C. Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning. Nat. Commun. 13, 409 (2022).
Gilbert, A. et al. Sensitivity of Barnes ice cap, Baffin Island, Canada, to climate state and internal dynamics. J. Geophys. Res.: Earth Surf. 121, 1516–1539 (2016).
Malles, J.-H. et al. Exploring the impact of a frontal ablation parameterization on projected 21st-century mass change for Northern Hemisphere glaciers. J. Glaciol. 69, 1317–1332 (2023).
Schuster, L. et al. lilianschuster/glacier-model-projections-until2300: glacier projection figures for the state of the cryosphere 2023 and 2024 report. Zenodo https://doi.org/10.5281/zenodo.10055416 (2024).
Compagno, L., Eggs, S., Huss, M., Zekollari, H. & Farinotti, D. Brief communication: do 1.0, 1.5, or 2.0∘C matter for the future evolution of Alpine glaciers? Cryosphere 15, 2593–2599 (2021).
Kraaijenbrink, P. D., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change 11, 591–597 (2021).
Wiersma, P. et al. Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff. Hydrol. Earth Syst. Sci. 26, 5971–5986 (2022).
Miles, E. et al. Health and sustainability of glaciers in High Mountain Asia. Nat. Commun. 12, 2868 (2021).
Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).
Zekollari, H. et al. Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations. Cryosphere 18, 5045–5066 (2024).
Aguayo, R. et al. Unravelling the sources of uncertainty in glacier runoff projections in the Patagonian Andes (40–56∘S). Cryosphere 18, 5383–5406 (2024).
Caro, A. et al. Hydrological response of Andean catchments to recent glacier mass loss. Cryosphere 18, 2487–2507 (2024).
Maussion, F. et al. OGGM/oggm: v1.6.1. Zenodo https://doi.org/10.5281/zenodo.8287580 (2023).
Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).
Huss, M. & Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res.: Earth Surf. 117, F04010 (2012).
Zekollari, H., Huss, M. & Farinotti, D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. Cryosphere 13, 1125–1146 (2019).
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).
Lange, S. et al. WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0). Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Repository https://doi.org/10.48364/ISIMIP.342217 (2021).
Cogley, J. G. et al. Glossary of Glacier Mass Balance and Related Terms. IHP-VII Technical Documents in Hydrology No. 86, Contribution No. 2 (International Association of Cryospheric Sciences, 2011).
Marzeion, B. et al. Partitioning the uncertainty of ensemble projections of global glacier mass change. Earth’s Future 8, e2019EF001470 (2020).
Major river basins of the world. GRDC https://grdc.bafg.de/products/basin_layers/major_rivers/ (2020).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Silvy, Y. et al. AERA-MIP: emission pathways, remaining budgets, and carbon cycle dynamics compatible with 1.5 and 2∘C global warming stabilization. Earth Syst. Dyn. 15, 1591–1628 (2024).
van Vuuren, D. P. et al. The Representative Concentration Pathways: an overview. Clim. Change 109, 5–31 (2011).
Kadow, C., Hall, D. M. & Ulbrich, U. Artificial intelligence reconstructs missing climate information. Nat. Geosci. 13, 408–413 (2020).
Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 3, 54 (2015).
Schuster, L., Rounce, D. R. & Maussion, F. Glacier projections sensitivity to temperature-index model choices and calibration strategies. Ann. Glaciol. 64, 293–308 (2023).
Schuster, L. et al. Code and data to: ‘Irreversible glacier change and trough water for centuries after overshooting 1.5∘C’ (v1.0). Zenodo https://doi.org/10.5281/zenodo.14247718 (2024).