Yar, H., Khan, Z. A., Ullah, F. U. M., Ullah, W. & Baik, S. W. A modified YOLOv5 architecture for efficient fire detection in smart cities. Expert Syst. Appl. 231, 120465 (2023).

Avazov, K., Mukhiddinov, M., Makhmudov, F. & Cho, Y. I. Fire detection method in smart City environments using a Deep-Learning-Based approach. Electronics 11, 73 (2021).

Article 

Google Scholar
 

Ahn, Y., Choi, H. & Kim, B. S. Development of early fire detection model for buildings using computer vision-based CCTV. J. Building Eng. 65, 105647 (2023).

Article 

Google Scholar
 

Wen, Z., Xie, L., Feng, H. & Tan, Y. Robust fusion algorithm based on RBF neural network with TS fuzzy model and its application to infrared flame detection problem. Appl. Soft Comput. 76, 251–264 (2019).

Article 

Google Scholar
 

Jadon, A. et al. A specialized lightweight fire & smoke detection model for real-time IoT applications. (2019).

Talaat, F. M. & ZainEldin, H. An improved fire detection approach based on YOLO-v8 for smart cities. Neural Comput. Appl. 35, 20939–20954 (2023).

Article 

Google Scholar
 

Tian, Y., Ren, J., Xu, Z. & Qi, M. A Cost–Benefit analysis framework for City-Scale seismic retrofitting scheme of buildings. Buildings. 13, 477 (2023).

Article 

Google Scholar
 

Zhao, H., Jin, J., Liu, Y., Guo, Y. & Shen, Y. FSDF: A high-performance fire detection framework. Expert Syst. Appl. 238, 121665 (2024).

Article 

Google Scholar
 

Gao, S. et al. Two-stage deep learning-based video image recognition of early fires in heritage buildings. Eng. Appl. Artif. Intell. 129, 107598 (2024).

Article 

Google Scholar
 

Bu, F. & Gharajeh, M. S. Intelligent and vision-based fire detection systems: A survey. Image Vis. Comput. 91, 103803 (2019).

Article 

Google Scholar
 

Wang, Z., Zhang, T., Wu, X. & Huang, X. Predicting transient Building fire based on external smoke images and deep learning. J. Building Eng. 47, 103823 (2022).

Article 

Google Scholar
 

Reddy, P. D. K., Margala, M., Shankar, S. S. & Chakrabarti, P. Early fire danger monitoring system in smart cities using optimization-based deep learning techniques with artificial intelligence. J. Reliable Intell. Environ. 10, 197–210 (2024).

Article 

Google Scholar
 

Atitallah, S. B., Driss, M., Boulila, W. & Ghézala, H. B. Leveraging deep learning and IoT big data analytics to support the smart cities development: review and future directions. Comput. Sci. Rev. 38, 100303 (2020).

Article 

Google Scholar
 

Wang, Z., Zhang, T. & Huang, X. Predicting real-time fire heat release rate by flame images and deep learning. Proc. Combust. Inst. 39, 4115–4123 (2023).

Article 

Google Scholar
 

Rapp, A., Di Lodovico, C., Torrielli, F. & Di Caro, L. How do people experience the images created by generative artificial intelligence? An exploration of People’s perceptions, appraisals, and emotions related to a Gen-AI text-to-image model and its creations. Int. J. Hum Comput. Stud.. 193, 103375 (2025).

Article 

Google Scholar
 

Lin, H. et al. Comparing AIGC and traditional Idea generation methods: evaluating their impact on creativity in the product design Ideation phase. Think. Skills Creativity. 54, 101649 (2024).

Article 

Google Scholar
 

Agnese, J., Herrera, J., Tao, H. & Zhu, X. A. Survey and taxonomy of adversarial neural networks for text-to-image synthesis. WIREs. (2019).

Nichol, A. et al. GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models. http://arxiv.org/abs/2112.10741 (2022).

Saharia, C. et al. Photorealistic Text-to-Image diffusion models with deep Language Understanding. Adv. Neural Inform. Process. Syst. 35, (2022).

Zhang, H. et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) (IEEE, 2017).

Karras, T. et al. Analyzing and improving the image quality of StyleGAN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8107–8116 (IEEE, 2020).

Hasib, R., Jan, A. & Khan, G. M. Real-time anomaly detection for smart and safe city using spatiotemporal deep learning. In Proceedings of the 2022 2nd International Conference on Artificial Intelligence (ICAI), 79–83 (IEEE, 2022).

Chen, X. et al. Wildland fire detection and monitoring using a Drone-Collected RGB/IR image dataset. IEEE Access. 10, 121301–121317 (2022).

Wu, Z., Xue, R. & Li, H. Real-time video fire detection via modified YOLOv5 network model. Fire Technol. 58, 2377–2403 (2022).

Article 

Google Scholar
 

Qin, Y. Y., Cao, J. T. & Ji, X. F. Fire detection method based on depthwise separable Convolution and YOLOv3. Int. J. Autom. Comput. 18, 300–310 (2021).

Article 

Google Scholar
 

Zhao, L., Zhi, L., Zhao, C. & Zheng, W. Fire-YOLO: A small target object detection method for fire inspection. Sustainability 14, 4930 (2022).

Article 

Google Scholar
 

Zhao, Y., Zhang, H., Zhang, X. & Chen, X. Fire smoke detection based on target-awareness and depthwise convolutions. Multimed. Tools Appl. 80, 27407–27421 (2021).

Article 

Google Scholar
 

Li, Y., Wu, A., Dong, N., Han, J. & Lu, Z. Smoke recognition based on deep transfer learning and lightweight network. In Proceedings of the 2022 2nd International Conference on Artificial Intelligence (ICAI), 8617–8621 (IEEE, 2019).

Cheng, G. et al. Visual fire detection using deep learning: A survey. Neurocomputing. 596, 127975. https://doi.org/10.1016/j.neucom.2024.127975 (2024).

Article 

Google Scholar
 

Zou, Z., Chen, K., Shi, Z., Guo, Y. & Ye, J. Object detection in 20 years: a survey. In Proceedings of the IEEE, 257–276 (IEEE, 2023).

Wang, C. Y. & Liao, H. Y. M. YOLOv1 to YOLOv10: The fastest and most accurate real-time object detection systems (2024).

Qiu, X., Chen, Y., Cai, W., Niu, M. & Li, J. LD-YOLOv10: A lightweight target detection algorithm for drone scenarios based on YOLOv10. Electronics 13, 3269. https://doi.org/10.3390/electronics13163269 (2024).

Article 

Google Scholar
 

An, R., Zhang, X., Sun, M. & Wang, G. GC-YOLOv9: innovative smart City traffic monitoring solution. Alex. Eng. J. 106, 277–287 (2024).

Article 

Google Scholar
 

Xu, G., Yue, Q. & Liu, X. Real-time monitoring of concrete crack based on deep learning algorithms and image processing techniques. Adv. Eng. Inform. 58, 102214 (2023).

Article 

Google Scholar
 

Guo, M. H. et al. Attention mechanisms in computer vision: A survey. Comp. Visual Media. 8, 331–368 (2022).

Article 

Google Scholar
 

San, B. B., Xu, S. Z., Shan, Z. W., Chen, W. & Looi, D. T.-W. Investigation on probability model of bending moment-rotation relationship for bolt-ball joints. J. Constr. Steel Res. 226, 109193 (2025).

Article 

Google Scholar
 

Shan, Z., Ma, H., Yu, Z. & Fan, F. Dynamic failure mechanism of single-layer reticulated (SLR) shells with bolt-column (BC) joint. J. Constr. Steel Res. 169, 106042 (2020).

Article 

Google Scholar
 

Midjourney Midjourney. https://www.midjourney.com/website.

Welcome (ed) to Python.org. Python.org. https://www.python.org/ (2025).

Tie, J. et al. LSKA-YOLOv8: A lightweight steel surface defect detection algorithm based on YOLOv8 improvement. Alex. Eng. J. 109, 201–212 (2024).

Article 

Google Scholar
 

Zamri, N. M. Enhanced small drone detection using optimized YOLOv8 with attention mechanisms. IEEE Access.. 12, 90629–90643 (2024).

Article 

Google Scholar
 

Yang, W. et al. Deformable Convolution and coordinate attention for fast cattle detection. Comput. Electron. Agric. 211, 108006 (2023).

Article 

Google Scholar
 

Wan, D. et al. Mixed local channel attention for object detection. Eng. Appl. Artif. Intell. 123, 106442 (2023).

Article 

Google Scholar
 

Zhang, Y. et al. Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging. J. Neurosci. Methods. 353, 109098 (2021).

Article 
PubMed 

Google Scholar