Yar, H., Khan, Z. A., Ullah, F. U. M., Ullah, W. & Baik, S. W. A modified YOLOv5 architecture for efficient fire detection in smart cities. Expert Syst. Appl. 231, 120465 (2023).
Avazov, K., Mukhiddinov, M., Makhmudov, F. & Cho, Y. I. Fire detection method in smart City environments using a Deep-Learning-Based approach. Electronics 11, 73 (2021).
Ahn, Y., Choi, H. & Kim, B. S. Development of early fire detection model for buildings using computer vision-based CCTV. J. Building Eng. 65, 105647 (2023).
Wen, Z., Xie, L., Feng, H. & Tan, Y. Robust fusion algorithm based on RBF neural network with TS fuzzy model and its application to infrared flame detection problem. Appl. Soft Comput. 76, 251–264 (2019).
Jadon, A. et al. A specialized lightweight fire & smoke detection model for real-time IoT applications. (2019).
Talaat, F. M. & ZainEldin, H. An improved fire detection approach based on YOLO-v8 for smart cities. Neural Comput. Appl. 35, 20939–20954 (2023).
Tian, Y., Ren, J., Xu, Z. & Qi, M. A Cost–Benefit analysis framework for City-Scale seismic retrofitting scheme of buildings. Buildings. 13, 477 (2023).
Zhao, H., Jin, J., Liu, Y., Guo, Y. & Shen, Y. FSDF: A high-performance fire detection framework. Expert Syst. Appl. 238, 121665 (2024).
Gao, S. et al. Two-stage deep learning-based video image recognition of early fires in heritage buildings. Eng. Appl. Artif. Intell. 129, 107598 (2024).
Bu, F. & Gharajeh, M. S. Intelligent and vision-based fire detection systems: A survey. Image Vis. Comput. 91, 103803 (2019).
Wang, Z., Zhang, T., Wu, X. & Huang, X. Predicting transient Building fire based on external smoke images and deep learning. J. Building Eng. 47, 103823 (2022).
Reddy, P. D. K., Margala, M., Shankar, S. S. & Chakrabarti, P. Early fire danger monitoring system in smart cities using optimization-based deep learning techniques with artificial intelligence. J. Reliable Intell. Environ. 10, 197–210 (2024).
Atitallah, S. B., Driss, M., Boulila, W. & Ghézala, H. B. Leveraging deep learning and IoT big data analytics to support the smart cities development: review and future directions. Comput. Sci. Rev. 38, 100303 (2020).
Wang, Z., Zhang, T. & Huang, X. Predicting real-time fire heat release rate by flame images and deep learning. Proc. Combust. Inst. 39, 4115–4123 (2023).
Rapp, A., Di Lodovico, C., Torrielli, F. & Di Caro, L. How do people experience the images created by generative artificial intelligence? An exploration of People’s perceptions, appraisals, and emotions related to a Gen-AI text-to-image model and its creations. Int. J. Hum Comput. Stud.. 193, 103375 (2025).
Lin, H. et al. Comparing AIGC and traditional Idea generation methods: evaluating their impact on creativity in the product design Ideation phase. Think. Skills Creativity. 54, 101649 (2024).
Agnese, J., Herrera, J., Tao, H. & Zhu, X. A. Survey and taxonomy of adversarial neural networks for text-to-image synthesis. WIREs. (2019).
Nichol, A. et al. GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models. http://arxiv.org/abs/2112.10741 (2022).
Saharia, C. et al. Photorealistic Text-to-Image diffusion models with deep Language Understanding. Adv. Neural Inform. Process. Syst. 35, (2022).
Zhang, H. et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) (IEEE, 2017).
Karras, T. et al. Analyzing and improving the image quality of StyleGAN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8107–8116 (IEEE, 2020).
Hasib, R., Jan, A. & Khan, G. M. Real-time anomaly detection for smart and safe city using spatiotemporal deep learning. In Proceedings of the 2022 2nd International Conference on Artificial Intelligence (ICAI), 79–83 (IEEE, 2022).
Chen, X. et al. Wildland fire detection and monitoring using a Drone-Collected RGB/IR image dataset. IEEE Access. 10, 121301–121317 (2022).
Wu, Z., Xue, R. & Li, H. Real-time video fire detection via modified YOLOv5 network model. Fire Technol. 58, 2377–2403 (2022).
Qin, Y. Y., Cao, J. T. & Ji, X. F. Fire detection method based on depthwise separable Convolution and YOLOv3. Int. J. Autom. Comput. 18, 300–310 (2021).
Zhao, L., Zhi, L., Zhao, C. & Zheng, W. Fire-YOLO: A small target object detection method for fire inspection. Sustainability 14, 4930 (2022).
Zhao, Y., Zhang, H., Zhang, X. & Chen, X. Fire smoke detection based on target-awareness and depthwise convolutions. Multimed. Tools Appl. 80, 27407–27421 (2021).
Li, Y., Wu, A., Dong, N., Han, J. & Lu, Z. Smoke recognition based on deep transfer learning and lightweight network. In Proceedings of the 2022 2nd International Conference on Artificial Intelligence (ICAI), 8617–8621 (IEEE, 2019).
Cheng, G. et al. Visual fire detection using deep learning: A survey. Neurocomputing. 596, 127975. https://doi.org/10.1016/j.neucom.2024.127975 (2024).
Zou, Z., Chen, K., Shi, Z., Guo, Y. & Ye, J. Object detection in 20 years: a survey. In Proceedings of the IEEE, 257–276 (IEEE, 2023).
Wang, C. Y. & Liao, H. Y. M. YOLOv1 to YOLOv10: The fastest and most accurate real-time object detection systems (2024).
Qiu, X., Chen, Y., Cai, W., Niu, M. & Li, J. LD-YOLOv10: A lightweight target detection algorithm for drone scenarios based on YOLOv10. Electronics 13, 3269. https://doi.org/10.3390/electronics13163269 (2024).
An, R., Zhang, X., Sun, M. & Wang, G. GC-YOLOv9: innovative smart City traffic monitoring solution. Alex. Eng. J. 106, 277–287 (2024).
Xu, G., Yue, Q. & Liu, X. Real-time monitoring of concrete crack based on deep learning algorithms and image processing techniques. Adv. Eng. Inform. 58, 102214 (2023).
Guo, M. H. et al. Attention mechanisms in computer vision: A survey. Comp. Visual Media. 8, 331–368 (2022).
San, B. B., Xu, S. Z., Shan, Z. W., Chen, W. & Looi, D. T.-W. Investigation on probability model of bending moment-rotation relationship for bolt-ball joints. J. Constr. Steel Res. 226, 109193 (2025).
Shan, Z., Ma, H., Yu, Z. & Fan, F. Dynamic failure mechanism of single-layer reticulated (SLR) shells with bolt-column (BC) joint. J. Constr. Steel Res. 169, 106042 (2020).
Midjourney Midjourney. https://www.midjourney.com/website.
Welcome (ed) to Python.org. Python.org. https://www.python.org/ (2025).
Tie, J. et al. LSKA-YOLOv8: A lightweight steel surface defect detection algorithm based on YOLOv8 improvement. Alex. Eng. J. 109, 201–212 (2024).
Zamri, N. M. Enhanced small drone detection using optimized YOLOv8 with attention mechanisms. IEEE Access.. 12, 90629–90643 (2024).
Yang, W. et al. Deformable Convolution and coordinate attention for fast cattle detection. Comput. Electron. Agric. 211, 108006 (2023).
Wan, D. et al. Mixed local channel attention for object detection. Eng. Appl. Artif. Intell. 123, 106442 (2023).
Zhang, Y. et al. Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging. J. Neurosci. Methods. 353, 109098 (2021).