Olmstead, A. L. & Rhode, P. W. An impossible undertaking: the eradication of bovine tuberculosis in the united States. J. Econ. Hist. 64, 734–772 (2004).
Palmer, M. V. & Waters, W. R. Bovine tuberculosis and the establishment of an eradication program in the United States: role of veterinarians. Vet. Med. Int. 2816345, (2011). https://doi.org/10.4061/2011/816345 (2011).
Olea-Popelka, F. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis—a call for action. Lancet Infect. Dis. 17, 21–25. https://doi.org/10.1016/S1473-3099(16)30139-6 (2017).
Gortázar, C., Che Amat, A. & O’brien, D. J. Open questions and recent advances in the control of a multi-host infectious disease: animal tuberculosis. Mammal Rev. 45, 160–175 (2015).
Thomas, J., Balseiro, A., Gortázar, C. & Risalde, M. A. Diagnosis of tuberculosis in wildlife: a systematic review. Vet. Res. 52, 31 (2021).
Krajewska-Wędzina, M. et al. Ten Years of Animal Tuberculosis Monitoring in Free-Living European Bison (Bison bonasus) in Poland. Animals, 13, 1205. (2023). https://doi.org/10.3390/ani13071205
Welz, M. et al. The eradication of M. Caprae tuberculosis in wild Boar (Sus Scrofa) in the Bieszczady mountains, Southern Poland – An administrative perspective. J. Vet. Res. 67, 61–66 (2023).
Orłowska, B. et al. Mycobacterium caprae transmission to free-living grey wolves (Canis lupus) in the Bieszczady mountains in Southern Poland. Europ J. Wildl. Res. 63 (5), 1. https://doi.org/10.1007/s10344-017-1079-4 (2017).
Orłowska, B. et al. Epidemiological characterization of Mycobacterium caprae strains isolated from wildlife in the Bieszczady mountains, on the border of Southeast Poland. BMC Vet. Res. 16(1), 362. https://doi.org/10.1186/s12917-020-02581-3 (2020).
Didkowska, A. et al. Microbiological and molecular monitoring for bovine tuberculosis in the Polish population of European bison (Bison bonasus). AAEM 28, 575–578. https://doi.org/10.26444/aaem/130822 (2021).
Plumb, G., Kowalczyk, R. & Hernandez-Blanco, J. A. Bison bonasus. The IUCN Red List of Threatened Species (2020).
Sobczuk, M. & Olech, W. Damage to the crops inflicted by European bison living in the Knyszyn forest. Eur. Bison Conserv. Newsl. 9, 39–48 (2016).
Klich, D., Olech, W., Łopucki, R. & Danik, K. Community attitudes to the European bison Bison Bonasus in areas where its reintroduction is planned and in areas with existing populations in Northeastern Poland. Eur. J. Wildl. Res. 64, 61 (2018).
Krajewska, M. et al. Transmission of Mycobacterium caprae in a herd of European bison in the Bieszczady mountains, Southern Poland. Eur. J. Wildl. Res. 61, 429–433 (2015).
Didkowska, A. et al. Biopsy and Tracheobronchial Aspirates as Additional Tools for the Diagnosis of Bovine Tuberculosis in Living European Bison (Bison bonasus). Animals 10, (2017). https://doi.org/10.3390/ani10112017, (2020).
Augustynowicz-Kopeć, E., Krajewska, M., Zabost, A., Napiórkowska, A. & Zwolska, Z. Characterisation of Mycobacterium bovis strains isolated from farm and wild animals from Poland. Bull. Vet. Inst. Pulawy. 55, 381–383 (2011).
Krajewska-Wędzina, M., Augustynowicz-Kopeć, E., Weiner, M. & Szulowski, K. Treatment for active tuberculosis in giraffe (Giraffa camelopardalis) in a zoo and potential consequences for public health – Case report. Ann. Agr Env Med. 25, 593–595 (2018).
Bielecki, W. et al. Monitoring Zdrowia Populacji Żubrów Jako element ochrony Gatunku. Eur. Bison Conserv. Newsl. 7, 43–50 (2014). (2014).
Larska, M. & Krzysiak, M. K. Infectious disease monitoring of European bison (Bison bonasus). In wildlife population monitoring. IntechOpen https://doi.org/10.5772/intechopen.84290 (2019).
Gardoni, N. et al. Arterial oxygenation and acid-base status before and during oxygen supplementation in captive European bison (Bison bonasus) immobilized with etorphine-acepromazine-xylazine. Front. Vet. Sci. 10 https://doi.org/10.3389/fvets.2023.112591 (2023).
Didkowska, A. et al. Antibodies against the Mycobacterium tuberculosis complex and Brucella spp. In captive and free-living European bison (Bison bonasus) In Poland. Vet. Med. Sci. 10, e1314. https://doi.org/10.1002/vms3.1314 (2024).
Didkowska, A. et al. Antibody responses in European bison (Bison bonasus) naturally infected with Mycobacterium caprae. Vet. Microb. 253 https://doi.org/10.1016/j.vetmic.2020.108952 (2021).
Gortázar, C., de la Fuente, J., Perelló, A. & Domínguez, L. Will we ever eradicate animal tuberculosis? Ir. Vet. J. 76 https://doi.org/10.1186/s13620-023-00254-9 (2023).
Martínez-Guijosa, J. et al. Environmental DNA: a promising factor for tuberculosis risk assessment in multi-host settings. PLoS ONE. 15 https://doi.org/10.1371/journal.pone.0233837 (2020).
Herrero-García, G. et al. One health farming: noninvasive monitoring reveals links between farm vertebrate richness and pathogen markers in outdoor hoofstock. One Health. 19, 100924. https://doi.org/10.1016/j.onehlt.2024.100924 (2024).
Barasona, J. A. et al. Environmental presence of Mycobacterium tuberculosis complex in aggregation points at the wildlife/livestock interface. Transbound. Emerg. Dis. 64 (4), 1148–1158. https://doi.org/10.1111/tbed.12480 (2017).
Hopkins, S. R. et al. Environmental Persistence of the World’s Most Burdensome Infectious and Parasitic Diseases. Front. Public. Health. 10 https://doi.org/10.3389/fpubh.2022.892366 (2022).
Fernández-de-Mera, I. G. et al. Detection of environmental SARS-CoV-2 RNA in a high prevalence setting in Spain. Transboun Emerg. Dis. 68, 1487–1492. https://doi.org/10.1111/tbed.13817 (2021).
Rebollada-Merino, A. et al. Environment and offspring surveillance in Porcine brucellosis. Front. Vet. Sci. 9 https://doi.org/10.3389/fvets.2022.915692 (2022).
Herrero-García, G. et al. Non-invasive surveillance of shared pathogens in the Eurasian brown bear (Ursus arctos) human interface. One Health. 18 https://doi.org/10.1016/j.onehlt.2024.100746 (2024).
Orłowska, B. et al. Detection of Mycobacterium tuberculosis complex genetic material in a Free-Living brown bear (Ursus arctos). J. Wild Dis. 59, 539–541. https://doi.org/10.7589/JWD-D-22-00150 (2023).
Radulski, Ł. Wykrywanie zakażeń bakteriami z rodzaju Mycobacterium u zwierząt wolno żyjących i towarzyszących przy użyciu nowoczesnych metod badawczych. PhD Thesis, Państwowy Instytut Weterynaryjny – Państwowy Instytut, Poland. (2022).
Pereira, A. C., Pinto, D. & Cunha, M. V. First time whole genome sequencing of Mycobacterium bovis from the environment supports transmission at the animal- environment interface. J. Hazard. Mater. 472 https://doi.org/10.1016/j.jhazmat.2024.134473 (2024).
Lorente-Leal, V. et al. Validation of a Real-Time PCR for the detection of Mycobacterium tuberculosis complex members in bovine tissue samples. Front. Vet. Sci. 6 https://doi.org/10.3389/fvets.2019.00061s (2019).
Lorente-Leal, V. et al. Direct PCR on tissue samples to detect mycobacterium tuberculosis complex: an alternative to the bacteriological culture. J. Clin. Microbiol. 59 https://doi.org/10.1128/JCM.01404-20 (2021).
Michelet, L., de Cruz, K., Karoui, C., Hénault, S. & Boschiroli, M. L. Mycobacterium microti, un agent tuberculeux méconnu In: Barbara Dufour, editor. Épidémiol Et Santé Anim. Maisons-Alfort Cedex, France: Journée scientifique AEEMA, 24 mars 2017, 71, 129–138 (2017).
Michelet, L. et al. Second line molecular diagnosis for bovine tuberculosis to improve diagnostic schemes. PLoS One. 13 (11), e0207614. https://doi.org/10.1371/journal.pone.0207614 (2018).
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer, 2002).