Kristensen, E. & Kostka, J. E. Macrofaunal burrows and irrigation in marine sediment: Microbiological and biogeochemical interactions. in Coastal and Estuarine Studies (eds. Kristensen, E., Haese, R. R. & Kostka, J. E.) vol. 60 125–157 https://doi.org/10.1029/CE060 (American Geophysical Union, Washington, D. C., 2005).
Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302, https://doi.org/10.3354/meps09506 (2012).
Snelgrove, P. V. R. The biodiversity of macrofaunal organisms in marine sediments. Biodivers. Conserv. 7, 1123–1132, https://doi.org/10.1023/A:1008867313340 (1998).
Snelgrove, P. V. R. et al. Global Carbon Cycling on a Heterogeneous Seafloor. Trends Ecol. Evol. 33(2), 96–105, https://doi.org/10.1016/j.tree.2017.11.004 (2018).
Braeckman, U. et al. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Mar. Ecol. Prog. Ser. 399, 173–186, https://doi.org/10.3354/meps08336 (2010).
Queirós, A. M. et al. A bioturbation classification of European marine infaunal invertebrates. Ecol. Evol. 3(11), 3958–3985, https://doi.org/10.1002/ece3.769 (2013).
Borja, A., Franco, J. & Pérez, V. A Marine Biotic Index to Establish the Ecological Quality of Soft Bottom Benthos Within European Estuarine and Coastal Environments. Mar. Pollut. Bull. 40(12), 1100–1114, https://doi.org/10.1016/S0025-326X(00)00061-8 (2000).
Borja, A., Muxika, I. & Franco, J. The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts. Mar. Pollut. Bull. 46(7), 835–845, https://doi.org/10.1016/S0025-326X(03)00090-0 (2003).
Dauer, D. M. Biological criteria, environmental health and estuarine macrobenthic community structure. Mar. Pollut. Bull. 26(5), 249–257, https://doi.org/10.1016/0025-326X(93)90063-P (1993).
Grall, J. & Glémarec, M. Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuar. Coast. Shelf Sci. 44(1), 43–53, https://doi.org/10.1016/S0272-7714(97)80006-6 (1997).
Gray, J. S. & Pearson, T. H. Objective Selection of Sensitive Species Indicative of Pollution-Induced Change in Benthic Communities. I. Comparative Methodology. Mar. Ecol. Prog. Ser. 9(2), 111–119, https://www.jstor.org/stable/24815096 (1982).
Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 16, 229–311 (1978).
Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union L164, 19-40, http://data.europa.eu/eli/dir/2008/56/oj (2008).
Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union L206, 7-50, http://data.europa.eu/eli/dir/1992/43/oj (1992).
Beauchard, O., Veríssimo, H., Queirós, A. M. & Herman, P. M. J. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecol. Indic. 76, 81–96, https://doi.org/10.1016/j.ecolind.2017.01.011 (2017).
Degen, R. et al. Trait-based approaches in rapidly changing ecosystems: A roadmap to the future polar oceans. Ecol. Indic. 91, 722–736, https://doi.org/10.1016/j.ecolind.2018.04.050 (2018).
de Juan, S. et al. Biological traits approaches in benthic marine ecology: Dead ends and new paths. Ecol. Evol. 12(6), e9001, https://doi.org/10.1002/ece3.9001 (2022).
Martini, S. et al. Functional trait-based approaches as a common framework for aquatic ecologists. Limnol. Oceanogr. 66(3), 965–994, https://doi.org/10.1002/lno.11655 (2021).
Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16(11), 646–655, https://doi.org/10.1016/S0169-5347(01)02283-2 (2001).
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21(4), 178–185, https://doi.org/10.1016/j.tree.2006.02.002 (2006).
Violle, C. et al. Let the concept of trait be functional! Oikos 116(5), 882–892, https://doi.org/10.1111/j.0030-1299.2007.15559.x (2007).
Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12(12), 474–478, https://doi.org/10.1016/S0169-5347(97)01219-6 (1997).
Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28(3), 167–177, https://doi.org/10.1016/j.tree.2012.10.004 (2013).
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16(5), 545–556, https://doi.org/10.1046/j.1365-2435.2002.00664.x (2002).
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 3–35, https://doi.org/10.1890/04-0922 (2005).
Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3(9), 2958–2975, https://doi.org/10.1002/ece3.601 (2013).
Bremner, J., Rogers, S. & Frid, C. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Prog. Ser. 254, 11–25, https://doi.org/10.3354/meps254011 (2003).
Bremner, J. Species’ traits and ecological functioning in marine conservation and management. J. Exp. Mar. Biol. Ecol. 366(1-2), 37–47, https://doi.org/10.1016/j.jembe.2008.07.007 (2008).
Begun, T. et al. Habitat and macrozoobenthic diversity in marine protected areas of the Southern Romanian Black Sea Coast. Front. Mar. Sci. 9, 845507, https://doi.org/10.3389/fmars.2022.845507 (2022).
Capet, A., Beckers, J.-M. & Grégoire, M. Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf – is there any recovery after eutrophication. Biogeosciences 10(6), 3943–3962, https://doi.org/10.5194/bg-10-3943-2013 (2013).
Gomoiu, M. T. Marine eutrophication syndrome in the north-western part of the Black Sea. in Marine Coastal Eutrophication (eds. Vollenweider, R.A., Marchetti, R. & Vicviani, R.) 683-692 https://doi.org/10.1016/B978-0-444-89990-3.50059-6 (Elsevier, 1992).
Mee, L., Friedrich, J. & Gomoiu, M. T. Restoring the Black Sea in Times of Uncertainty. Oceanography 18(2), 100–111, https://doi.org/10.5670/oceanog.2005.45 (2005).
Nenciu, M., Niță, V., Teacă, A., Popa, A. & Begun, T. An Assessment of Potential Beam Trawling Impact on North-Western Black Sea Benthic Habitats Aiming at a Sustainable Fisheries Management. Water 15(12), 2241, https://doi.org/10.3390/w15122241 (2023).
Teacă, A., Mureșan, M., Begun, T., Popa, A. & Ion, G. Marine benthic habitats within a physical disturbed site from the Romanian Coast of the Black Sea. J. Environ. Prot. Ecol. 20(2), 723–732 (2019).
Teacă, A., Muresan, M., Menabit, S., Bucse, A. & Begun, T. Assessment of Romanian circalittoral soft bottom benthic habitats under Danube River influence. Regional Studies in Marine Science 40, 101523, https://doi.org/10.1016/j.rsma.2020.101523 (2020).
Zaitsev, Y. P. Recent changes in the trophic structure of the Black Sea. Fish. Oceanogr. 1(2), 180–189, https://doi.org/10.1111/j.1365-2419.1992.tb00036.x (1992).
Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9(6), 741–758, https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).
Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8), 2290–2301, https://doi.org/10.1890/07-1206.1 (2008).
Beauchard, O. et al. Assessing sea floor functional biodiversity and vulnerability. Mar. Ecol. Prog. Ser. 708, 21–43, https://doi.org/10.3354/meps14270 (2023).
Villnäs, A., Hewitt, J., Snickars, M., Westerbom, M. & Norkko, A. Template for using biological trait groupings when exploring large‐scale variation in seafloor multifunctionality. Ecol. Appl. 28(1), 78–94, https://doi.org/10.1002/eap.1630 (2018).
Solan, M. et al. Extinction and Ecosystem Function in the Marine Benthos. Science 306, 1177–1180, https://doi.org/10.1126/science.1103960 (2004).
Renz, J. R. et al. Community bioirrigation potential (BIPc), an index to quantify the potential for solute exchange at the sediment-water interface. Mar. Environ. Res. 141, 214–224, https://doi.org/10.1016/j.marenvres.2018.09.013 (2018).
Wrede, A., Beermann, J., Dannheim, J., Gutow, L. & Brey, T. Organism functional traits and ecosystem supporting services – A novel approach to predict bioirrigation. Ecol. Indic. 91, 737–743, https://doi.org/10.1016/j.ecolind.2018.04.026 (2018).
Lam-Gordillo, O., Baring, R. & Dittmann, S. Ecosystem functioning and functional approaches on marine macrobenthic fauna: A research synthesis towards a global consensus. Ecol. Indic. 115, 106379, https://doi.org/10.1016/j.ecolind.2020.106379 (2020).
Snelgrove, P. V. R., Thrush, S. F., Wall, D. H. & Norkko, A. Real world biodiversity–ecosystem functioning: a seafloor perspective. Trends Ecol. Evol. 29(7), 398–405, https://doi.org/10.1016/j.tree.2014.05.002 (2014).
Dolédec, S., Chessel, D., Ter Braak, C. J. F. & Champely, S. Matching species traits to environmental variables: a new three-table ordination method. Environ. Ecol. Stat. 3, 143–166, https://doi.org/10.1007/BF02427859 (1996).
Dray, S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95(1), 14–21, https://doi.org/10.1890/13-0196.1 (2014).
Bolam, S. G., Cooper, K. & Downie, A. L. Mapping Marine Benthic Biological Traits to Facilitate Future Sustainable Development. Ecol. Appl. 33(7), e2905, https://doi.org/10.1002/eap.2905 (2023).
Gogina, M. et al. Towards benthic ecosystem functioning maps: Quantifying bioturbation potential in the German part of the Baltic Sea. Ecol. Indic. 73, 574–588, https://doi.org/10.1016/j.ecolind.2016.10.025 (2017).
Gogina, M. et al. Interregional comparison of benthic ecosystem functioning: Community bioturbation potential in four regions along the NE Atlantic shelf. Ecol. Indic. 110, 105945, https://doi.org/10.1016/j.ecolind.2019.105945 (2020).
Weinert, M. et al. Benthic ecosystem functioning under climate change: modelling the bioturbation potential for benthic key species in the southern North Sea. PeerJ 10, e14105, https://doi.org/10.7717/peerj.14105 (2022).
Bianchi, T. S. et al. What global biogeochemical consequences will marine animal–sediment interactions have during climate change? Elem Sci Anth. 9(1), 00180, https://doi.org/10.1525/elementa.2020.00180 (2021).
Cogan, C. B., Todd, B. J., Lawton, P. & Noji, T. T. The role of marine habitat mapping in ecosystem-based management. ICES J. Mar. Sci. 66(9), 2033–2042, https://doi.org/10.1093/icesjms/fsp214 (2009).
Miatta, M., Bates, A. E. & Snelgrove, P. V. R. Incorporating Biological Traits into Conservation Strategies. Annu. Rev. Mar. Sci. 13(1), 421–443, https://doi.org/10.1146/annurev-marine-032320-094121 (2021).
Wijsman, J. Spatial distribution in sediment characteristics and benthic activity on the northwestern Black Sea shelf: macrobenthos. Marine Data Archive https://doi.org/10.14284/525 (1995).
Teaca, A., Begun, T. & Gomoiu, M.-T. Abundance and biomass of macrobenthos in the Black Sea during Mare Nigrum cruise S-RO1. PANGAEA https://doi.org/10.1594/PANGAEA.848807 (2015).
Teaca, A., Begun, T. & Gomoiu, M.-T. Abundance and biomass of macrobenthos in the western part of the Black Sea during Mare Nigrum cruise S-RO2. PANGAEA https://doi.org/10.1594/PANGAEA.848569 (2015).
Gomoiu, M.-T. Bottom macro-fauna biomass recorded on the Romanian NW Black Sea Shelf during 2009 – 2011 cruises performed in the framework of EU FP7 Hypox Project. PANGAEA https://doi.org/10.1594/PANGAEA.782538 (2012).
Gomoiu, M.-T. Bottom macro-fauna abundance recorded on the Romanian NW Black Sea Shelf during 2009 – 2011 cruises performed in the framework of EU FP7 Hypox Project. PANGAEA https://doi.org/10.1594/PANGAEA.782537 (2012).
Teacă, A. et al. Benthic habitats. in EMBLAS Final Scientific Report (eds. Slobodnik et al.) 91–111 (Seredniak T.K., 2022).
Todorova, V. & Stamatova, H. Zoobenthos data. In: Black Sea Monitoring 2017, Institute of Oceanology – BAS (2017).
Capet, A., Troupin, C., Carstensen, J., Grégoire, M. & Beckers, J.-M. Untangling spatial and temporal trends in the variability of the Black Sea Cold Intermediate Layer and mixed Layer Depth using the DIVA detrending procedure. Ocean Dyn 64, 315–324, https://doi.org/10.1007/s10236-013-0683-4 (2014).
Miladinova, S., Stips, A., Garcia-Gorriz, E. & Macias Moy, D. Formation and changes of the Black Sea cold intermediate layer. Prog. Oceanogr. 167, 11–23, https://doi.org/10.1016/j.pocean.2018.07.002 (2018).
Stanev, E. V., Peneva, E. & Chtirkova, B. Climate Change and Regional Ocean Water Mass Disappearance: Case of the Black Sea. J. Geophys. Res. Oceans 124(7), 4803–4819, https://doi.org/10.1029/2019JC015076 (2019).
Capet, A., Vandenbulcke, L. & Grégoire, M. A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status. Biogeosciences 17(24), 6507–6525, https://doi.org/10.5194/bg-17-6507-2020 (2020).
Chevalier, S., Beauchard, O., Teacă, A., Soetaert, K. & Grégoire, M. Partial recovery of macrozoobenthos on the northwestern shelf of the Black Sea. Mar. Pollut. Bull. 207, 116857, https://doi.org/10.1016/j.marpolbul.2024.116857 (2024).
Populus, J. et al. EUSeaMap. A European broad-scale seabed habitat map. EC contract no. MARE/2012/10, https://doi.org/10.13155/49975 (Ifremer, 2017).
Vasquez, M. et al. EUSeaMap 2021. A European broad-scale seabed habitat map. Ref. D1.13 EASME/EMFF/2018/1.3.1.8/Lot2/SI2.810241– EMODnet Thematic Lot n° 2 – Seabed Habitats EUSeaMap 2021 – Technical Report, https://doi.org/10.13155/83528 (EMODnet, 2021).
Ciliberti, S. A. et al. Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service. J. Mar. Sci. Eng. 9(10), 1146, https://doi.org/10.3390/jmse9101146 (2021).
Capet, A., Meysman, F. J., Akoumianaki, I., Soetaert, K. & Grégoire, M. Integrating sediment biogeochemistry into 3D oceanic models: A study of benthic-pelagic coupling in the Black Sea. Ocean Modelling 101, 83–100, https://doi.org/10.1016/j.ocemod.2016.03.006 (2016).
Grégoire, M., Raick, C. & Soetaert, K. Numerical modeling of the central Black Sea ecosystem functioning during the eutrophication phase. Prog. Oceanogr. 76(3), 286–333, https://doi.org/10.1016/j.pocean.2008.01.002 (2008).
Grégoire, M. & Soetaert, K. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: A biogeochemical model of the whole water column coupling the oxic and anoxic parts. Ecol. Modell. 221(19), 2287–2301, https://doi.org/10.1016/j.ecolmodel.2010.06.007 (2010).
Gomoiu, M.-T. General data on the marine benthic populations state in the NW Black Sea. Proceedings of the International Workshop “Fluvial – Marine Interactions” 2, 179–199 (1997).
Wijsman, J., Herman, P. & Gomoiu, M. Spatial distribution in sediment characteristics and benthic activity on the northwestern Black Sea shelf. Mar. Ecol. Prog. Ser. 181, 25–39, https://doi.org/10.3354/meps181025 (1999).
Todorova, V. & Konsulova, T. Manual for quantitative sampling and sample treatment of marine soft-bottom macrozoobenthic. Inst. Oceanol. Bulg. Acad. Sci (IO-BAS): Varna Bulg. (2005).
Surugiu, V. Systematics and ecology of species of the Polydora-complex (Polychaeta: Spionidae) of the Black Sea. Zootaxa 3518(1), 45–65, https://doi.org/10.11646/zootaxa.3518.1.3 (2012).
Pandian, T. J. Reproduction and development in Crustacea Vol. 1. (CRC Press, 2016).
Jones, C. G., Lawton, J. H. & Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78(7), 1946–1957, https://doi.org/10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2 (1997).
Chevalier, S. et al. A macrozoobenthic data set of the Black Sea northwestern shelf. Figshare https://doi.org/10.6084/m9.figshare.27888843 (2025).
Dolédec, S. & Chessel, D. Co‐inertia analysis: an alternative method for studying species–environment relationships. Freshw. Biol. 31(3), 277–294, https://doi.org/10.1111/j.1365-2427.1994.tb01741.x (1994).
Dray, S., Chessel, D. & Thioulouse, J. Co-inertia analysis and the linking of ecological data tables. Ecology 84(11), 3078–3089, https://doi.org/10.1890/03-0178 (2003).
Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37, 547–579 (1901).
Escoufier, Y. Le Traitement des Variables Vectorielles. Biometrics 29(4), 751–760, https://doi.org/10.2307/2529140 (1973).
Friedrich, J. et al. Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11(4), 1215–1259, https://doi.org/10.5194/bg-11-1215-2014 (2014).
Todorova, V., Doncheva, V. & Trifonova, E. F. First Implementation of Marine Strategy Framework Directive for Benthic Habitats Assessment in the Bulgarian Black Sea. Ecol.Balkanica 3, 247–256 (2020).
Beauchard, O., Mestdagh, S., Koop, L., Ysebaert, T. & Herman, P. Benthic synecology in a soft sediment shelf: habitat contrasts and assembly rules of life strategies. Mar. Ecol. Prog. Ser. 682, 31–50, https://doi.org/10.3354/meps13928 (2022).
Quell, F., Schratzberger, M., Beauchard, O., Bruggeman, J. & Webb, T. Biological trait profiles discriminate between native and non-indigenous marine invertebrates. Aquat. Invasions 16(4), 571–600, https://doi.org/10.3391/ai.2021.16.4.01 (2021).
Dolédec, S. & Chessel, D. Rythmes saisonniers et composantes stationnelles en milieu aquatique. I: Description d’un plan d’observation complet par projection de variables. Acta Oecologica. Oecologia Generalis 8(3), 403–426 (1987).
Thioulouse, J. Simultaneous analysis of a sequence of paired ecological tables: A comparison of several methods. Ann. Appl. Stat. 5(4), 2300–2325, https://doi.org/10.1214/10-AOAS372 (2011).
Dray, S. & Legendre, P. Testing the Species Traits–Environment Relationships: The Fourth-Corner Problem Revisited. Ecology 89(12), 3400–3412, https://doi.org/10.1890/08-0349.1 (2008).
Beauchard, O. et al. A generic approach to develop a trait-based indicator of trawling-induced disturbance. Mar. Ecol. Prog. Ser. 675, 35–52, https://doi.org/10.3354/meps13840 (2021).
Hinz, H., Törnroos, A. & de Juan, S. Trait-based indices to assess benthic vulnerability to trawling and model loss of ecosystem functions. Ecol. Indic. 126, 107692, https://doi.org/10.1016/j.ecolind.2021.107692 (2021).
Chevene, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31(3), 295–309, https://doi.org/10.1111/j.1365-2427.1994.tb01742.x (1994).
Usseglio‐Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshw. Biol. 43(2), 175–205, https://doi.org/10.1046/j.1365-2427.2000.00535.x (2000).
Bolam, S. G. et al. Differences in biological traits composition of benthic assemblages between unimpacted habitats. Mar. Environ. Res. 126, 1–13, https://doi.org/10.1016/j.marenvres.2017.01.004 (2017).
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2024).
Chessel, D., Dufour, A. B. & Thioulouse, J. The ade4 package-I-One-table methods. R News 4(1), 5–10, https://journal.r-project.org/articles/RN-2004-002/ (2004).
Dray, S., Dufour, A. B. & Chessel, D. The ade4 package-II: Two-table and K-table methods. R News 7(2), 47–52, https://journal.r-project.org/articles/RN-2007-019/ (2007).