Kristensen, E. & Kostka, J. E. Macrofaunal burrows and irrigation in marine sediment: Microbiological and biogeochemical interactions. in Coastal and Estuarine Studies (eds. Kristensen, E., Haese, R. R. & Kostka, J. E.) vol. 60 125–157 https://doi.org/10.1029/CE060 (American Geophysical Union, Washington, D. C., 2005).

Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302, https://doi.org/10.3354/meps09506 (2012).

Article 
ADS 

Google Scholar
 

Snelgrove, P. V. R. The biodiversity of macrofaunal organisms in marine sediments. Biodivers. Conserv. 7, 1123–1132, https://doi.org/10.1023/A:1008867313340 (1998).

Article 

Google Scholar
 

Snelgrove, P. V. R. et al. Global Carbon Cycling on a Heterogeneous Seafloor. Trends Ecol. Evol. 33(2), 96–105, https://doi.org/10.1016/j.tree.2017.11.004 (2018).

Article 
PubMed 

Google Scholar
 

Braeckman, U. et al. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Mar. Ecol. Prog. Ser. 399, 173–186, https://doi.org/10.3354/meps08336 (2010).

Article 
ADS 
CAS 

Google Scholar
 

Queirós, A. M. et al. A bioturbation classification of European marine infaunal invertebrates. Ecol. Evol. 3(11), 3958–3985, https://doi.org/10.1002/ece3.769 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Borja, A., Franco, J. & Pérez, V. A Marine Biotic Index to Establish the Ecological Quality of Soft Bottom Benthos Within European Estuarine and Coastal Environments. Mar. Pollut. Bull. 40(12), 1100–1114, https://doi.org/10.1016/S0025-326X(00)00061-8 (2000).

Article 
CAS 

Google Scholar
 

Borja, A., Muxika, I. & Franco, J. The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts. Mar. Pollut. Bull. 46(7), 835–845, https://doi.org/10.1016/S0025-326X(03)00090-0 (2003).

Article 
CAS 
PubMed 

Google Scholar
 

Dauer, D. M. Biological criteria, environmental health and estuarine macrobenthic community structure. Mar. Pollut. Bull. 26(5), 249–257, https://doi.org/10.1016/0025-326X(93)90063-P (1993).

Article 

Google Scholar
 

Grall, J. & Glémarec, M. Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuar. Coast. Shelf Sci. 44(1), 43–53, https://doi.org/10.1016/S0272-7714(97)80006-6 (1997).

Article 
ADS 

Google Scholar
 

Gray, J. S. & Pearson, T. H. Objective Selection of Sensitive Species Indicative of Pollution-Induced Change in Benthic Communities. I. Comparative Methodology. Mar. Ecol. Prog. Ser. 9(2), 111–119, https://www.jstor.org/stable/24815096 (1982).

Article 
ADS 

Google Scholar
 

Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 16, 229–311 (1978).


Google Scholar
 

Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union L164, 19-40, http://data.europa.eu/eli/dir/2008/56/oj (2008).

Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union L206, 7-50, http://data.europa.eu/eli/dir/1992/43/oj (1992).

Beauchard, O., Veríssimo, H., Queirós, A. M. & Herman, P. M. J. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecol. Indic. 76, 81–96, https://doi.org/10.1016/j.ecolind.2017.01.011 (2017).

Article 

Google Scholar
 

Degen, R. et al. Trait-based approaches in rapidly changing ecosystems: A roadmap to the future polar oceans. Ecol. Indic. 91, 722–736, https://doi.org/10.1016/j.ecolind.2018.04.050 (2018).

Article 

Google Scholar
 

de Juan, S. et al. Biological traits approaches in benthic marine ecology: Dead ends and new paths. Ecol. Evol. 12(6), e9001, https://doi.org/10.1002/ece3.9001 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martini, S. et al. Functional trait-based approaches as a common framework for aquatic ecologists. Limnol. Oceanogr. 66(3), 965–994, https://doi.org/10.1002/lno.11655 (2021).

Article 
ADS 

Google Scholar
 

Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16(11), 646–655, https://doi.org/10.1016/S0169-5347(01)02283-2 (2001).

Article 

Google Scholar
 

McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21(4), 178–185, https://doi.org/10.1016/j.tree.2006.02.002 (2006).

Article 
PubMed 

Google Scholar
 

Violle, C. et al. Let the concept of trait be functional! Oikos 116(5), 882–892, https://doi.org/10.1111/j.0030-1299.2007.15559.x (2007).

Article 
ADS 

Google Scholar
 

Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12(12), 474–478, https://doi.org/10.1016/S0169-5347(97)01219-6 (1997).

Article 
CAS 
PubMed 

Google Scholar
 

Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28(3), 167–177, https://doi.org/10.1016/j.tree.2012.10.004 (2013).

Article 
PubMed 

Google Scholar
 

Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16(5), 545–556, https://doi.org/10.1046/j.1365-2435.2002.00664.x (2002).

Article 

Google Scholar
 

Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 3–35, https://doi.org/10.1890/04-0922 (2005).

Article 

Google Scholar
 

Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3(9), 2958–2975, https://doi.org/10.1002/ece3.601 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bremner, J., Rogers, S. & Frid, C. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Prog. Ser. 254, 11–25, https://doi.org/10.3354/meps254011 (2003).

Article 
ADS 

Google Scholar
 

Bremner, J. Species’ traits and ecological functioning in marine conservation and management. J. Exp. Mar. Biol. Ecol. 366(1-2), 37–47, https://doi.org/10.1016/j.jembe.2008.07.007 (2008).

Article 

Google Scholar
 

Begun, T. et al. Habitat and macrozoobenthic diversity in marine protected areas of the Southern Romanian Black Sea Coast. Front. Mar. Sci. 9, 845507, https://doi.org/10.3389/fmars.2022.845507 (2022).

Article 

Google Scholar
 

Capet, A., Beckers, J.-M. & Grégoire, M. Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf – is there any recovery after eutrophication. Biogeosciences 10(6), 3943–3962, https://doi.org/10.5194/bg-10-3943-2013 (2013).

Article 
ADS 
CAS 

Google Scholar
 

Gomoiu, M. T. Marine eutrophication syndrome in the north-western part of the Black Sea. in Marine Coastal Eutrophication (eds. Vollenweider, R.A., Marchetti, R. & Vicviani, R.) 683-692 https://doi.org/10.1016/B978-0-444-89990-3.50059-6 (Elsevier, 1992).

Mee, L., Friedrich, J. & Gomoiu, M. T. Restoring the Black Sea in Times of Uncertainty. Oceanography 18(2), 100–111, https://doi.org/10.5670/oceanog.2005.45 (2005).

Article 

Google Scholar
 

Nenciu, M., Niță, V., Teacă, A., Popa, A. & Begun, T. An Assessment of Potential Beam Trawling Impact on North-Western Black Sea Benthic Habitats Aiming at a Sustainable Fisheries Management. Water 15(12), 2241, https://doi.org/10.3390/w15122241 (2023).

Article 

Google Scholar
 

Teacă, A., Mureșan, M., Begun, T., Popa, A. & Ion, G. Marine benthic habitats within a physical disturbed site from the Romanian Coast of the Black Sea. J. Environ. Prot. Ecol. 20(2), 723–732 (2019).


Google Scholar
 

Teacă, A., Muresan, M., Menabit, S., Bucse, A. & Begun, T. Assessment of Romanian circalittoral soft bottom benthic habitats under Danube River influence. Regional Studies in Marine Science 40, 101523, https://doi.org/10.1016/j.rsma.2020.101523 (2020).

Article 

Google Scholar
 

Zaitsev, Y. P. Recent changes in the trophic structure of the Black Sea. Fish. Oceanogr. 1(2), 180–189, https://doi.org/10.1111/j.1365-2419.1992.tb00036.x (1992).

Article 

Google Scholar
 

Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9(6), 741–758, https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).

Article 
PubMed 

Google Scholar
 

Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8), 2290–2301, https://doi.org/10.1890/07-1206.1 (2008).

Article 
PubMed 

Google Scholar
 

Beauchard, O. et al. Assessing sea floor functional biodiversity and vulnerability. Mar. Ecol. Prog. Ser. 708, 21–43, https://doi.org/10.3354/meps14270 (2023).

Article 
ADS 

Google Scholar
 

Villnäs, A., Hewitt, J., Snickars, M., Westerbom, M. & Norkko, A. Template for using biological trait groupings when exploring large‐scale variation in seafloor multifunctionality. Ecol. Appl. 28(1), 78–94, https://doi.org/10.1002/eap.1630 (2018).

Article 
PubMed 

Google Scholar
 

Solan, M. et al. Extinction and Ecosystem Function in the Marine Benthos. Science 306, 1177–1180, https://doi.org/10.1126/science.1103960 (2004).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Renz, J. R. et al. Community bioirrigation potential (BIPc), an index to quantify the potential for solute exchange at the sediment-water interface. Mar. Environ. Res. 141, 214–224, https://doi.org/10.1016/j.marenvres.2018.09.013 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Wrede, A., Beermann, J., Dannheim, J., Gutow, L. & Brey, T. Organism functional traits and ecosystem supporting services – A novel approach to predict bioirrigation. Ecol. Indic. 91, 737–743, https://doi.org/10.1016/j.ecolind.2018.04.026 (2018).

Article 

Google Scholar
 

Lam-Gordillo, O., Baring, R. & Dittmann, S. Ecosystem functioning and functional approaches on marine macrobenthic fauna: A research synthesis towards a global consensus. Ecol. Indic. 115, 106379, https://doi.org/10.1016/j.ecolind.2020.106379 (2020).

Article 

Google Scholar
 

Snelgrove, P. V. R., Thrush, S. F., Wall, D. H. & Norkko, A. Real world biodiversity–ecosystem functioning: a seafloor perspective. Trends Ecol. Evol. 29(7), 398–405, https://doi.org/10.1016/j.tree.2014.05.002 (2014).

Article 
PubMed 

Google Scholar
 

Dolédec, S., Chessel, D., Ter Braak, C. J. F. & Champely, S. Matching species traits to environmental variables: a new three-table ordination method. Environ. Ecol. Stat. 3, 143–166, https://doi.org/10.1007/BF02427859 (1996).

Article 

Google Scholar
 

Dray, S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95(1), 14–21, https://doi.org/10.1890/13-0196.1 (2014).

Article 
PubMed 

Google Scholar
 

Bolam, S. G., Cooper, K. & Downie, A. L. Mapping Marine Benthic Biological Traits to Facilitate Future Sustainable Development. Ecol. Appl. 33(7), e2905, https://doi.org/10.1002/eap.2905 (2023).

Article 
PubMed 

Google Scholar
 

Gogina, M. et al. Towards benthic ecosystem functioning maps: Quantifying bioturbation potential in the German part of the Baltic Sea. Ecol. Indic. 73, 574–588, https://doi.org/10.1016/j.ecolind.2016.10.025 (2017).

Article 

Google Scholar
 

Gogina, M. et al. Interregional comparison of benthic ecosystem functioning: Community bioturbation potential in four regions along the NE Atlantic shelf. Ecol. Indic. 110, 105945, https://doi.org/10.1016/j.ecolind.2019.105945 (2020).

Article 

Google Scholar
 

Weinert, M. et al. Benthic ecosystem functioning under climate change: modelling the bioturbation potential for benthic key species in the southern North Sea. PeerJ 10, e14105, https://doi.org/10.7717/peerj.14105 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bianchi, T. S. et al. What global biogeochemical consequences will marine animal–sediment interactions have during climate change? Elem Sci Anth. 9(1), 00180, https://doi.org/10.1525/elementa.2020.00180 (2021).

Article 
MathSciNet 

Google Scholar
 

Cogan, C. B., Todd, B. J., Lawton, P. & Noji, T. T. The role of marine habitat mapping in ecosystem-based management. ICES J. Mar. Sci. 66(9), 2033–2042, https://doi.org/10.1093/icesjms/fsp214 (2009).

Article 

Google Scholar
 

Miatta, M., Bates, A. E. & Snelgrove, P. V. R. Incorporating Biological Traits into Conservation Strategies. Annu. Rev. Mar. Sci. 13(1), 421–443, https://doi.org/10.1146/annurev-marine-032320-094121 (2021).

Article 
ADS 

Google Scholar
 

Wijsman, J. Spatial distribution in sediment characteristics and benthic activity on the northwestern Black Sea shelf: macrobenthos. Marine Data Archive https://doi.org/10.14284/525 (1995).

Teaca, A., Begun, T. & Gomoiu, M.-T. Abundance and biomass of macrobenthos in the Black Sea during Mare Nigrum cruise S-RO1. PANGAEA https://doi.org/10.1594/PANGAEA.848807 (2015).

Teaca, A., Begun, T. & Gomoiu, M.-T. Abundance and biomass of macrobenthos in the western part of the Black Sea during Mare Nigrum cruise S-RO2. PANGAEA https://doi.org/10.1594/PANGAEA.848569 (2015).

Gomoiu, M.-T. Bottom macro-fauna biomass recorded on the Romanian NW Black Sea Shelf during 2009 – 2011 cruises performed in the framework of EU FP7 Hypox Project. PANGAEA https://doi.org/10.1594/PANGAEA.782538 (2012).

Gomoiu, M.-T. Bottom macro-fauna abundance recorded on the Romanian NW Black Sea Shelf during 2009 – 2011 cruises performed in the framework of EU FP7 Hypox Project. PANGAEA https://doi.org/10.1594/PANGAEA.782537 (2012).

Teacă, A. et al. Benthic habitats. in EMBLAS Final Scientific Report (eds. Slobodnik et al.) 91–111 (Seredniak T.K., 2022).

Todorova, V. & Stamatova, H. Zoobenthos data. In: Black Sea Monitoring 2017, Institute of Oceanology – BAS (2017).

Capet, A., Troupin, C., Carstensen, J., Grégoire, M. & Beckers, J.-M. Untangling spatial and temporal trends in the variability of the Black Sea Cold Intermediate Layer and mixed Layer Depth using the DIVA detrending procedure. Ocean Dyn 64, 315–324, https://doi.org/10.1007/s10236-013-0683-4 (2014).

Article 
ADS 

Google Scholar
 

Miladinova, S., Stips, A., Garcia-Gorriz, E. & Macias Moy, D. Formation and changes of the Black Sea cold intermediate layer. Prog. Oceanogr. 167, 11–23, https://doi.org/10.1016/j.pocean.2018.07.002 (2018).

Article 
ADS 

Google Scholar
 

Stanev, E. V., Peneva, E. & Chtirkova, B. Climate Change and Regional Ocean Water Mass Disappearance: Case of the Black Sea. J. Geophys. Res. Oceans 124(7), 4803–4819, https://doi.org/10.1029/2019JC015076 (2019).

Article 

Google Scholar
 

Capet, A., Vandenbulcke, L. & Grégoire, M. A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status. Biogeosciences 17(24), 6507–6525, https://doi.org/10.5194/bg-17-6507-2020 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Chevalier, S., Beauchard, O., Teacă, A., Soetaert, K. & Grégoire, M. Partial recovery of macrozoobenthos on the northwestern shelf of the Black Sea. Mar. Pollut. Bull. 207, 116857, https://doi.org/10.1016/j.marpolbul.2024.116857 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Populus, J. et al. EUSeaMap. A European broad-scale seabed habitat map. EC contract no. MARE/2012/10, https://doi.org/10.13155/49975 (Ifremer, 2017).

Vasquez, M. et al. EUSeaMap 2021. A European broad-scale seabed habitat map. Ref. D1.13 EASME/EMFF/2018/1.3.1.8/Lot2/SI2.810241– EMODnet Thematic Lot n° 2 – Seabed Habitats EUSeaMap 2021 – Technical Report, https://doi.org/10.13155/83528 (EMODnet, 2021).

Ciliberti, S. A. et al. Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service. J. Mar. Sci. Eng. 9(10), 1146, https://doi.org/10.3390/jmse9101146 (2021).

Article 

Google Scholar
 

Capet, A., Meysman, F. J., Akoumianaki, I., Soetaert, K. & Grégoire, M. Integrating sediment biogeochemistry into 3D oceanic models: A study of benthic-pelagic coupling in the Black Sea. Ocean Modelling 101, 83–100, https://doi.org/10.1016/j.ocemod.2016.03.006 (2016).

Article 
ADS 

Google Scholar
 

Grégoire, M., Raick, C. & Soetaert, K. Numerical modeling of the central Black Sea ecosystem functioning during the eutrophication phase. Prog. Oceanogr. 76(3), 286–333, https://doi.org/10.1016/j.pocean.2008.01.002 (2008).

Article 
ADS 

Google Scholar
 

Grégoire, M. & Soetaert, K. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: A biogeochemical model of the whole water column coupling the oxic and anoxic parts. Ecol. Modell. 221(19), 2287–2301, https://doi.org/10.1016/j.ecolmodel.2010.06.007 (2010).

Article 
CAS 

Google Scholar
 

Gomoiu, M.-T. General data on the marine benthic populations state in the NW Black Sea. Proceedings of the International Workshop “Fluvial – Marine Interactions” 2, 179–199 (1997).


Google Scholar
 

Wijsman, J., Herman, P. & Gomoiu, M. Spatial distribution in sediment characteristics and benthic activity on the northwestern Black Sea shelf. Mar. Ecol. Prog. Ser. 181, 25–39, https://doi.org/10.3354/meps181025 (1999).

Article 
ADS 

Google Scholar
 

Todorova, V. & Konsulova, T. Manual for quantitative sampling and sample treatment of marine soft-bottom macrozoobenthic. Inst. Oceanol. Bulg. Acad. Sci (IO-BAS): Varna Bulg. (2005).

Surugiu, V. Systematics and ecology of species of the Polydora-complex (Polychaeta: Spionidae) of the Black Sea. Zootaxa 3518(1), 45–65, https://doi.org/10.11646/zootaxa.3518.1.3 (2012).

Article 

Google Scholar
 

Pandian, T. J. Reproduction and development in Crustacea Vol. 1. (CRC Press, 2016).

Jones, C. G., Lawton, J. H. & Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78(7), 1946–1957, https://doi.org/10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2 (1997).

Article 

Google Scholar
 

Chevalier, S. et al. A macrozoobenthic data set of the Black Sea northwestern shelf. Figshare https://doi.org/10.6084/m9.figshare.27888843 (2025).

Dolédec, S. & Chessel, D. Co‐inertia analysis: an alternative method for studying species–environment relationships. Freshw. Biol. 31(3), 277–294, https://doi.org/10.1111/j.1365-2427.1994.tb01741.x (1994).

Article 

Google Scholar
 

Dray, S., Chessel, D. & Thioulouse, J. Co-inertia analysis and the linking of ecological data tables. Ecology 84(11), 3078–3089, https://doi.org/10.1890/03-0178 (2003).

Article 

Google Scholar
 

Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37, 547–579 (1901).


Google Scholar
 

Escoufier, Y. Le Traitement des Variables Vectorielles. Biometrics 29(4), 751–760, https://doi.org/10.2307/2529140 (1973).

Article 
MathSciNet 

Google Scholar
 

Friedrich, J. et al. Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11(4), 1215–1259, https://doi.org/10.5194/bg-11-1215-2014 (2014).

Article 
ADS 

Google Scholar
 

Todorova, V., Doncheva, V. & Trifonova, E. F. First Implementation of Marine Strategy Framework Directive for Benthic Habitats Assessment in the Bulgarian Black Sea. Ecol.Balkanica 3, 247–256 (2020).


Google Scholar
 

Beauchard, O., Mestdagh, S., Koop, L., Ysebaert, T. & Herman, P. Benthic synecology in a soft sediment shelf: habitat contrasts and assembly rules of life strategies. Mar. Ecol. Prog. Ser. 682, 31–50, https://doi.org/10.3354/meps13928 (2022).

Article 
ADS 

Google Scholar
 

Quell, F., Schratzberger, M., Beauchard, O., Bruggeman, J. & Webb, T. Biological trait profiles discriminate between native and non-indigenous marine invertebrates. Aquat. Invasions 16(4), 571–600, https://doi.org/10.3391/ai.2021.16.4.01 (2021).

Article 

Google Scholar
 

Dolédec, S. & Chessel, D. Rythmes saisonniers et composantes stationnelles en milieu aquatique. I: Description d’un plan d’observation complet par projection de variables. Acta Oecologica. Oecologia Generalis 8(3), 403–426 (1987).


Google Scholar
 

Thioulouse, J. Simultaneous analysis of a sequence of paired ecological tables: A comparison of several methods. Ann. Appl. Stat. 5(4), 2300–2325, https://doi.org/10.1214/10-AOAS372 (2011).

Article 
MathSciNet 

Google Scholar
 

Dray, S. & Legendre, P. Testing the Species Traits–Environment Relationships: The Fourth-Corner Problem Revisited. Ecology 89(12), 3400–3412, https://doi.org/10.1890/08-0349.1 (2008).

Article 
PubMed 

Google Scholar
 

Beauchard, O. et al. A generic approach to develop a trait-based indicator of trawling-induced disturbance. Mar. Ecol. Prog. Ser. 675, 35–52, https://doi.org/10.3354/meps13840 (2021).

Article 
ADS 

Google Scholar
 

Hinz, H., Törnroos, A. & de Juan, S. Trait-based indices to assess benthic vulnerability to trawling and model loss of ecosystem functions. Ecol. Indic. 126, 107692, https://doi.org/10.1016/j.ecolind.2021.107692 (2021).

Article 

Google Scholar
 

Chevene, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31(3), 295–309, https://doi.org/10.1111/j.1365-2427.1994.tb01742.x (1994).

Article 

Google Scholar
 

Usseglio‐Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshw. Biol. 43(2), 175–205, https://doi.org/10.1046/j.1365-2427.2000.00535.x (2000).

Article 

Google Scholar
 

Bolam, S. G. et al. Differences in biological traits composition of benthic assemblages between unimpacted habitats. Mar. Environ. Res. 126, 1–13, https://doi.org/10.1016/j.marenvres.2017.01.004 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2024).

Chessel, D., Dufour, A. B. & Thioulouse, J. The ade4 package-I-One-table methods. R News 4(1), 5–10, https://journal.r-project.org/articles/RN-2004-002/ (2004).


Google Scholar
 

Dray, S., Dufour, A. B. & Chessel, D. The ade4 package-II: Two-table and K-table methods. R News 7(2), 47–52, https://journal.r-project.org/articles/RN-2007-019/ (2007).


Google Scholar