Nagy, K. & Körmendi, K. Use of renewable energy sources in light of the “New Energy Strategy for Europe 2011–2020”. Appl Energy 96, 393–399 (2012).

Article 

Google Scholar
 

Aszódi, A. et al. Comparative analysis of national energy strategies of 19 European countries in light of the green deal’s objectives. Energy Convers. Manag. X 12, 100136 (2021).


Google Scholar
 

Liu, W. et al. The production and application of hydrogen in steel industry. Int. J. Hydrog. Energy 46, 10548–10569 (2021).

Article 

Google Scholar
 

Wang, C. et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests. Int. J. Hydrog. Energy 48, 243–256 (2023).

Article 

Google Scholar
 

Meng, B. et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. Int. J. Hydrog. Energy 42, 7404–7412 (2017).

Article 

Google Scholar
 

Zhang, S. et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation. Int. J. Hydrog. Energy 46, 20621–20629 (2021).

Article 

Google Scholar
 

Nguyen, T. T., Park, J., Kim, W. S., Nahm, S. H. & Beak, U. B. Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel. Int. J. Hydrog. Energy 45, 2368–2381 (2020).

Article 

Google Scholar
 

Dwivedi, S. K. & Vishwakarma, M. Hydrogen embrittlement in different materials: a review. Int. J. Hydrog. Energy 43, 21603–21616 (2018).

Article 

Google Scholar
 

Islam, A. et al. Hydrogen blending in natural gas pipelines: a comprehensive review of material compatibility and safety considerations. Int. J. Hydrog. Energy 93, 1429–1461 (2024).

Article 

Google Scholar
 

Liu, Q. & Atrens, A. A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels. Corros. Rev. 31, 85–103 (2013).

Article 

Google Scholar
 

Zhao, W., Zhang, T., Zhao, Y., Sun, J. & Wang, Y. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment. Corros. Sci. 111, 84–97 (2016).

Article 

Google Scholar
 

Jebaraj, J. J. M., Morrison, D. J. & Suni, I. I. Hydrogen diffusion coefficients through Inconel 718 in different metallurgical conditions. Corros. Sci. 80, 517–522 (2014).

Article 

Google Scholar
 

Bernstein, I. M. The effect of hydrogen on the deformation of iron. Scr. Metall. 8, 343–349 (1974).

Article 

Google Scholar
 

Devanathan, M. A. V. & Stachurski, Z. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc. R. Soc. Lond. A Math. Phys. Sci. 270, 90–102 (1962).

Article 

Google Scholar
 

Mohtadi-Bonab, M. A. & Masoumi, M. Different aspects of hydrogen diffusion behavior in pipeline steel. J. Mater. Res. Technol. 24, 4762–4783 (2023).

Hull, D. & Bacon, D. J. Chapter 2 – Observation of dislocations. In: Introduction to dislocations, 5th ed. (eds. Hull, D. & Bacon, D. J.) 21–41 (Butterworth-Heinemann, 2011). https://doi.org/10.1016/B978-0-08-096672-4.00002-5.

Song, J. & Curtin, W. A. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12, 145–151 (2013).

Article 
PubMed 

Google Scholar
 

Bulatov, V. & Cai, W. One dislocation at a time. Nat. Mater. 22, 679–680 (2023).

Article 
PubMed 

Google Scholar
 

Choo, W. Y. & Lee, J. Y. Effect of cold working on the hydrogen trapping phenomena in pure iron. Metall. Trans. A 14, 1299–1305 (1983).

Article 

Google Scholar
 

Song, Y. et al. Improvement of hydrogen embrittlement resistance of 2205 duplex stainless steel by laser peening. Int J. Hydrog. Energy 48, 18930–18945 (2023).

Article 

Google Scholar
 

Martin, F. et al. State of hydrogen in matter: fundamental Ad/absorption, trapping and transport mechanisms. In: Mechanics-Microstructure-Corrosion Coupling 171–197 (Elsevier, 2019).

Kurkela, M. & Latanision, R. M. The effect of plastic deformation on the transport of hydrogen in nickel. Scr. Metall. 13, 927–932 (1979).

Article 

Google Scholar
 

Chêne, J. & Brass, A. M. Hydrogen transport by mobile dislocations in nickel base superalloy single crystals. Scr. Mater. 40, 537–542 (1999).

Article 

Google Scholar
 

Kumnick, A. J. & Johnson, H. H. Deep trapping states for hydrogen in deformed iron. Acta Metall. 28, 33–39 (1980).

Article 

Google Scholar
 

Lessar, J. F. & Gerberich, W. W. Grain size effects in hydrogen-assisted cracking. Metall. Trans. A 7, 953–960 (1976).

Article 

Google Scholar
 

Ramunni, V. P., Pascuet, M. I., Castin, N. & Rivas, A. M. F. The influence of grain size on the hydrogen diffusion in bcc Fe. Comput Mater. Sci. 188, 110146 (2021).

Article 

Google Scholar
 

Yazdipour, N., Dunne, D. P. & Pereloma, E. V. Effect of grain size on the hydrogen diffusion process in steel using cellular automaton approach. In: Materials Science Forum vol. 706 1568–1573 (Trans Tech Publ, 2012).

Brass, A. M. & Chanfreau, A. Accelerated diffusion of hydrogen along grain boundaries in nickel. Acta Mater. 44, 3823–3831 (1996).

Article 

Google Scholar
 

Pourazizi, R., Mohtadi-Bonab, M. A., Davani, R. K. Z. & Szpunar, J. A. Effect of thermo-mechanical controlled process on microstructural texture and hydrogen embrittlement resistance of API 5L X70 pipeline steels in sour environments. Int. J. Press. Vessels Pip. 194, 104491 (2021).

Article 

Google Scholar
 

Ichimura, M., Sasajima, Y. & Imabayashi, M. Grain Boundary Effect on Diffusion of Hydrogen in Pure Aluminum. Mater. Trans., JIM 32, 1109–1114 (1991).

Article 

Google Scholar
 

Paul, A., Laurila, T., Vuorinen, V. & Divinski, S. V. Short-circuit diffusion. In: Thermodynamics, diffusion and the Kirkendall effect in solids (eds. Paul, A., Laurila, T., Vuorinen, V. & Divinski, S. V.) 429–491 (Springer International Publishing, 2014). https://doi.org/10.1007/978-3-319-07461-0_10.

Oudriss, A. et al. The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel. Scr. Mater. 66, 37–40 (2012).

Article 

Google Scholar
 

Yazdipour, N., Haq, A. J., Muzaka, K. & Pereloma, E. V. 2D modelling of the effect of grain size on hydrogen diffusion in X70 steel. Comput Mater. Sci. 56, 49–57 (2012).

Article 

Google Scholar
 

Sakamoto, Y. & Takao, K. Diffusion of Hydrogen in Quenched and Tempered Alloy Steels. Corrosion Eng. 27, 641–646 (1978).

Article 

Google Scholar
 

Asaoka, T., Lapasset, G., Aucouturier, M. & Lacombe, P. Observation of hydrogen trapping in Fe-0.15 wt% Ti alloy by high resolution autoradiography. Corrosion 34, 39–47 (1978).

Article 

Google Scholar
 

Nakai, Y. Mechanism of delayed fracture by hydrogen, 75 (The Iron and Steel Inst. of Japan, 1975).

Hagi, H. Effect of interface between cementite and ferrite on diffusion of hydrogen in carbon steels. Mater. Trans., JIM 35, 168–173 (1994).

Article 

Google Scholar
 

Tau, L. & Chan, S. L. I. Effects of ferrite/pearlite alignment on the hydrogen permeation in a AISI 4130 steel. Mater. Lett. 29, 143–147 (1996).

Article 

Google Scholar
 

Xiaolin, W., Guang, C., Shihan, L. I. & Jing, Y. Effects of ferrite/pearlite structure on hydrogen diffusion in pipeline steels. Mech. Eng. 45, 305–313 (2023).


Google Scholar
 

Forot, C. et al. Impact of cementite tortuosity on hydrogen diffusion in pearlitic steels (Eurocorr, 2015).

Lee, H.-L. & Chan, S. L.-I. Hydrogen embrittlement of AISI 4130 steel with an alternate ferrite/pearlite banded structure. Mater. Sci. Eng. A 142, 193–201 (1991).

Article 

Google Scholar
 

Park, G. T., Koh, S. U., Jung, H. G. & Kim, K. Y. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel. Corros. Sci. 50, 1865–1871 (2008).

Article 

Google Scholar
 

Thomas, A. & Szpunar, J. A. Hydrogen diffusion and trapping in X70 pipeline steel. Int. J. Hydrog. Energy 45, 2390–2404 (2020).

Article 

Google Scholar
 

Ghadiani, H., Farhat, Z., Alam, T. & Islam, M. A. Assessing hydrogen embrittlement in pipeline steels for natural gas-hydrogen blends: implications for existing infrastructure. Solids 5, 375–393 (2024).

Article 

Google Scholar
 

Sun, B. et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Nat. Mater. 20, 1629–1634 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, P., Li, W., Zhao, H. & Jin, X. Role of microstructure on electrochemical hydrogen permeation properties in advanced high strength steels. Int J. Hydrog. Energy 43, 10905–10914 (2018).

Article 

Google Scholar
 

Li, Z. H. et al. Role of deformation on the hydrogen trapping in the pearlitic steel. Scr. Mater. 241, 115859 (2024).

Article 

Google Scholar
 

Kawakami, K. & Matsumiya, T. Ab-initio investigation of hydrogen trap state by cementite in bcc-Fe. ISIJ Int. 53, 709–713 (2013).

Article 

Google Scholar
 

Mirzoev, A. A., Verkhovykh, A. V., Okishev, K. Y. & Mirzaev, D. A. Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics. Mol. Phys. 116, 482–490 (2018).

Article 

Google Scholar
 

Jiang, Y., Li, C., Wang, D. & Di, X. Effect of cyclic plastic deformation on hydrogen diffusion behavior and embrittlement susceptibility of reeling-pipeline steel weldments. Int J. Hydrog. Energy 46, 30158–30172 (2021).

Article 

Google Scholar
 

Pressouyre, G. M. & Bernstein, I. M. An example of the effect of hydrogen trapping on hydrogen embrittlement. Metall. Trans. A 12, 835–844 (1981).

Article 

Google Scholar
 

Jack, T. A. Investigation of hydrogen induced cracking susceptibility of API 5L X65 pipeline steels (University of Saskatchewan, 2021).

Mohtadi-Bonab, M. A., Szpunar, J. A. & Razavi-Tousi, S. S. A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels. Eng. Fail Anal. 33, 163–175 (2013).

Article 

Google Scholar
 

Mohtadi-Bonab, M. A., Szpunar, J. A. & Razavi-Tousi, S. S. Hydrogen induced cracking susceptibility in different layers of a hot rolled X70 pipeline steel. Int J. Hydrog. Energy 38, 13831–13841 (2013).

Article 

Google Scholar
 

Jeklih, A. Absorption and diffusion of hydrogen in steels. Mater. Tehnol. 34, 331 (2000).


Google Scholar
 

Svoboda, J. & Fischer, F. D. Modelling for hydrogen diffusion in metals with traps revisited. Acta Mater. 60, 1211–1220 (2012).

Article 

Google Scholar
 

Hagi, H. & Hayashi, Y. Dislocation trapping in hydrogen and deuterium diffusion in iron. J. Jpn. Inst. Met. 49, 327–331 (1985).

Article 

Google Scholar
 

Kiuchi, K. & McLellan, R. B. The solubility and diffusivity of hydrogen in well-annealed and deformed iron. In: Perspectives in hydrogen in metals, 29–52 (Elsevier, 1986).

Protopopoff, E. & Marcus, P. Surface effects on hydrogen entry into metals. in Corrosion mechanisms in theory and practice 62–105 (CRC Press, 2002).

Wipf, H. Hydrogen in Metals III: Properties and Applications. vol. 73 (Springer, 1997).

Thomas, G. J., Bernstein, I. M. & Thompson, A. W. Hydrogen effects in metals. In: Proceedings of the third international conference on effect of hydrogen on behavior of materials (Moran W. Y., 1980),(eds, Bernstein, I. M. & Thompson, A. W.) 77 (The Metallurgical Society of AIME, 1981).

Alefeld, G. & Völkl, J. Hydrogen in metals I-Basic properties, 28 (Berlin and New York, 1978).

Wipf, H. Solubility and diffusion of hydrogen in pure metals and alloys. Phys. Scr. 2001, 43 (2001).

Article 

Google Scholar
 

Wipf, H. Diffusion of hydrogen in metals. In: Hydrogen in Metals III: properties and applications 51–91 (Springer, 2007).

Grabert, H. & Schober, H. R. Theory of tunneling and diffusion of light interstitials in metals. In: Hydrogen in metals III: Properties and applications 5–49 (Springer, 2007).

Schober, H. R. & Stoneham, A. M. Motion of interstitials in metals: quantum tunneling at low temperatures. Phys. Rev. B 26, 1819 (1982).

Article 

Google Scholar
 

Turnbull, A. Hydrogen diffusion and trapping in metals. In: Gaseous hydrogen embrittlement of materials in energy technologies 89–128 (Elsevier, 2012).

de Santa Maria, M. S. & Turnbull, A. The effect of H2S concentration and pH on the cracking resistance of AISI 410 stainless steel in 5% brine. Corros. Sci. 29, 69–88 (1989).

Article 

Google Scholar
 

Clark, E. B., Leis, B. N. & Eiber, R. J. Integrity characteristics of vintage pipelines (Battelle Memorial Institute, Columbus, 2004).

Slifka, A. J. et al. Fatigue measurement of pipeline steels for the application of transporting gaseous hydrogen. J. Press Vessel. Technol. 140, 011407 (2018).

Steiner, M., Marewski, U. & Engel, C. Qualification of high-pressure gas pipelines for transmission of hydrogen. (Pipeline Technology Conference, 2023).

ASTM. ASTM E8-04 – standard test methods for tension testing of metallic materials (ASTM, 2024).

Hussein, N. Chapter 7 Phase equilibrium diagrams. In: Materials science and engineering, 146 (International Energy and Environment Foundation, 2017).

ASTM. G148 – Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique (ASTM, 2018).

Atabay, S. E. et al. Laser powder bed fusion printing of CoCrFeMnNi high entropy alloy: processing, microstructure, and mechanical properties. High Entropy Alloys Mater. 2, 129–173 (2024).

Ajito, S., Hojo, T., Koyama, M. & Akiyama, E. Effects of ammonium thiocyanate and pH of aqueous solutions on hydrogen absorption into iron under cathodic polarization. ISIJ Int. 61, 1209–1214 (2021).

Article 

Google Scholar
 

Turnbull, A. 4 – Hydrogen diffusion and trapping in metals. In: Gaseous hydrogen embrittlement of materials in energy technologies 89–128 (Woodhead Publishing Limited, 2012).

Liu, Q., Atrens, A. D., Shi, Z., Verbeken, K. & Atrens, A. Determination of the hydrogen fugacity during electrolytic charging of steel. Corros. Sci. 87, 239–258 (2014).

Article 

Google Scholar
 

Lu, X., Wang, D. & Johnsen, R. Hydrogen diffusion and trapping in nickel-based alloy 625: An electrochemical permeation study. Electrochim. Acta 421, 140477 (2022).

Article 

Google Scholar
 

Cheng, Y. F. Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking. Int. J. Hydrog. Energy 32, 1269–1276 (2007).

Article 

Google Scholar
 

Fallahmohammadi, E., Bolzoni, F. & Lazzari, L. Measurement of lattice and apparent diffusion coefficient of hydrogen in X65 and F22 pipeline steels. Int. J. Hydrog. Energy 38, 2531–2543 (2013).

Article 

Google Scholar
 

Dong, C. F., Liu, Z. Y., Li, X. G. & Cheng, Y. F. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. Int. J. Hydrog. Energy 34, 9879–9884 (2009).

Article 

Google Scholar
 

Song, Y. et al. Effect of cementite on the hydrogen diffusion/trap characteristics of 2.25 Cr-1Mo-0.25 V steel with and without annealing. Materials 11, 788 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Araújo, D. F., Vilar, E. O. & Carrasco, J. P. A critical review of mathematical models used to determine the density of hydrogen trapping sites in steels and alloys. Int. J. Hydrog. Energy 39, 12194–12200 (2014).

Article 

Google Scholar
 

Ashby, M. F. The deformation of plastically non-homogeneous materials. Philos. Mag. J. Theor. Exp. Appl. Phys. 21, 399–424 (1970).


Google Scholar
 

Cottrell, A. H. The mechanical properties of matter (Wiley, New York, 1964).

Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P. Electron backscatter diffraction in materials science. vol. 2 (Springer, 2009).

Pantleon, W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr. Mater. 58, 994–997 (2008).

Article 

Google Scholar
 

Choo, W. Y. & Lee, J. Y. Thermal analysis of trapped hydrogen in pure iron. Metall. Trans. A 13, 135–140 (1982).

Article 

Google Scholar
 

Lee, J.-L. & Lee, J.-Y. The interaction of hydrogen with the interface of AI 2 O 3 particles in iron. Metall. Trans. A 17, 2183–2186 (1986).

Article 

Google Scholar
 

Lin, Y.-C. et al. Response of hydrogen desorption and hydrogen embrittlement to precipitation of nanometer-sized copper in tempered martensitic low-carbon steel. JOM 71, 1349–1356 (2019).

Article 

Google Scholar
 

Hong, G.-W. & Lee, J.-Y. The interaction of hydrogen and the cementite-ferrite interface in carbon steel. J. Mater. Sci. 18, 271–277 (1983).

Article 

Google Scholar
 

Li, D., Gangloff, R. P. & Scully, J. R. Hydrogen trap states in ultrahigh-strength AERMET 100 steel. Metall. Mater. Trans. A 35, 849–864 (2004).

Article 

Google Scholar
 

Wei, F.-G. & Tsuzaki, K. Response of hydrogen trapping capability to microstructural change in tempered Fe–0.2 C martensite. Scr. Mater. 52, 467–472 (2005).

Article 

Google Scholar
 

Lee, J.-Y. & Lee, J.-L. A trapping theory of hydrogen in pure iron. Philos. Mag. A 56, 293–309 (1987).

Article 

Google Scholar
 

Lee, J.-L. & Lee, J.-Y. The effect of lattice defects induced by cathodic hydrogen charging on the apparent diffusivity of hydrogen in pure iron. J. Mater. Sci. 22, 3939–3948 (1987).

Article 

Google Scholar
 

Turnbull, A. & Hutchings, R. B. Analysis of hydrogen atom transport in a two-phase alloy. Mater. Sci. Eng.: A 177, 161–171 (1994).

Article 

Google Scholar
 

Chen, Y.-S. et al. Hydrogen trapping and embrittlement in metals–a review. Int. J. Hydrogen Energy 136, 789–821 (2024).

Lee, K. Y., Lee, J.-Y. & Kim, D. R. A study of hydrogen-trapping phenomena in AISI 5160 spring steel. Mater. Sci. Eng. 67, 213–220 (1984).

Article 

Google Scholar
 

Lee, J. L. & Lee, J. Y. Hydrogen trapping in AISI 4340 steel. Met. Sci. 17, 426–432 (1983).

Article 

Google Scholar
 

Lee, H. G. & Lee, J.-Y. Hydrogen trapping by TiC particles in iron. Acta Metall. 32, 131–136 (1984).

Article 

Google Scholar