Suaria, G. et al. Floating macro- and microplastics around the southern ocean: results from the antarctic circumnavigation expedition. Environ. Int. 136, 105494 (2020).

Article 

Google Scholar
 

Lacerda, A. L. D. F. et al. Plastics in sea surface waters around the Antarctic Peninsula. Sci. Rep. 9, 40311 (2019).

Article 

Google Scholar
 

Waller, C. L. et al. Microplastics in the Antarctic marine system: an emerging area of research. Sci. Total Environ. 598, 220–227 (2017).

Article 

Google Scholar
 

Cunningham, E. M. et al. High abundances of microplastic pollution in deep-sea sediments: evidence from Antarctica and the Southern Ocean. Environ. Sci. Technol. 54, 13661–13671 (2020).

Article 

Google Scholar
 

van Cauwenberghe, L., Vanreusel, A., Mees, J. & Janssen, C. R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499 (2013).

Article 

Google Scholar
 

Kelly, A. et al. Microplastic contamination in East Antarctic sea ice. Mar. Pollut. Bull. 154, 111130 (2020).

Article 

Google Scholar
 

Ivar do Sul, J. A. et al. Plastics in the Antarctic environment: are we looking only the tip of the iceberg? Oecol. Aust. 15, 150–170 (2011).

Article 

Google Scholar
 

Waluda, C. M. et al. Thirty years of marine debris in the Southern Ocean: Annual surveys of two island shores in the Scotia Sea. Environ. Int. 136, 105460 (2020).

Article 

Google Scholar
 

Ryan, P. G., Bruyn, P. J. N. & Bester, M. N. Regional differences in plastic ingestion among southern ocean fur seals and albatrosses. Mar. Pollut. Bull. 104, 207–210 (2016).

Article 

Google Scholar
 

Van Franeker, J. A. & Bell, P. J. Plastic ingestion by petrels breeding in Antarctica. Mar. Pollut. Bull. 19, 672–674 (1988).

Article 

Google Scholar
 

Waluda, C. M. & Staniland, I. J. Entanglement of Antarctic fur seals at bird Island, South Georgia. Mar. Pollut. Bull. 74, 244–252 (2013).

Article 

Google Scholar
 

Payne, M. R. Fur Seals Arctocephalus tropicalis and A. gazella crossing the antarctic convergence at south Georgia. Mammalia 43, 93–98 (1979).

Article 

Google Scholar
 

García-Gómez, J. C. et al. Plastic as a vector of dispersion for marine species with invasive potential: a review. Front. Ecol. Evol. 9, 629756 (2021).

Article 

Google Scholar
 

Barnes, D. K. A. Invasions by marine life on plastic debris. Nature 416, 808–809 (2002).

Article 

Google Scholar
 

Lobelle, D. & Cunliffe, M. Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 62, 197–200 (2011).

Article 

Google Scholar
 

Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the ‘Plastisphere’: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).

Article 

Google Scholar
 

Ramsperger, A. F. R. M. et al. Structural diversity in early-stage biofilm formation on microplastics depends on environmental medium and polymer properties. Water 12, 3216 (2020).

Article 

Google Scholar
 

Kirstein, I. V., Wichels, A., Krohne, G. & Gerdts, G. Mature biofilm communities on synthetic polymers in seawater – specific or general? Mar. Environ. Res. 142, 147–154 (2018).

Oberbeckmann, S. & Labrenz, M. Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation. Annu. Rev. Mar. Sci. 12, 209–232 (2020).

Article 

Google Scholar
 

Wright, R. J., Bosch, R., Langille, M. G. I. & Christie-Oleza, J. A. A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere. Limnol. Oceanogr. Methods 2, 1–25 (2020).


Google Scholar
 

Wright, R. J., Langille, M. G. I. & Walker, T. R. Food or just a free ride? A metaanalysis reveals the global diversity of the plastisphere. ISME J. 15, 1–18 (2021).

Article 

Google Scholar
 

Davidov, K. et al. Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with nanopore MinION. Sci. Rep. 10, 74180 (2020).

Article 

Google Scholar
 

Kettner, M. T., Oberbeckmann, S., Labrenz, M. & Grossart, H. P. The Eukaryotic Life on Microplastics in Brackish Ecosystems. Front. Mar. Sci. 10, 538 (2019).


Google Scholar
 

Rillig, M. C., Kim, S. W. & Zhu, Y.-G. The soil plastisphere. Nat. Rev. Microbiol. 22, 64–74 (2024).

Article 

Google Scholar
 

Du Toit, A. Plastic communities. Nat. Rev. Microbiol. 20, 575 (2022).

Article 

Google Scholar
 

Rummel, C. D. et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Technol. Lett. 4, 258–267 (2017).

Article 

Google Scholar
 

Lobelle, D. et al. Global modeled sinking characteristics of biofouled microplastic. J. Geophys. Res. Oceans 126, e2020JC017098 (2021).

Article 

Google Scholar
 

Barnes, D. K. A. & Fraser, K. P. Rafting by five phyla on man-made flotsam in the Southern Ocean. Mar. Ecol. Prog. Ser. 262, 289–291 (2003).

Article 

Google Scholar
 

Lacerda, A. L.dF., Proietti, M. C., Secchi, E. R. & Taylor, J. D. Diverse groups of fungi are associated with plastics in the surface waters of the western South Atlantic and the Antarctic peninsula. Mol. Ecol. 29, 1903–1918 (2020).

Article 

Google Scholar
 

Cappello, S. et al. New insights into the structure and function of the prokaryotic communities colonizing plastic debris collected in King George Island (Antarctica): preliminary observations from two plastic fragments. J. Hazard. Mater. 414, 125586 (2021).

Article 

Google Scholar
 

Caroppo, C. et al. Microbial biofilms colonizing plastic substrates in the Ross Sea (Antarctica). J. Mar. Sci. Eng. 10, 1714 (2022).

Article 

Google Scholar
 

Monràs-Riera, P., Avila, C. & Ballesté, E. Plastisphere in an Antarctic environment: A microcosm approach. Mar. Pollut. Bull. 208, 116961 (2024).

Article 

Google Scholar
 

De-la-Torre, G. E. et al. Assessing the current state of plastic pollution research in Antarctica: knowledge gaps and recommendations. Chemosphere 355, 141870 (2024).

Article 

Google Scholar
 

Caruso, G. et al. Plastic occurrence, sources, and impacts in Antarctic environment and biota. Water Biol. Secur. 1, 100034 (2022).

Article 

Google Scholar
 

Ferreira, A. et al. Climate change is associated with higher phytoplankton biomass and longer blooms in the West Antarctic Peninsula. Nat. Commun. 15, 6536 (2024).

Article 

Google Scholar
 

Ferreira, A. et al. Changes in phytoplankton communities along the Northern Antarctic Peninsula: causes, impacts and research priorities. Front. Mar. Sci. 7, 576254 (2020).

Article 

Google Scholar
 

Mendes, C. R. B. et al. Cryptophytes: An emerging algal group in the rapidly changing Antarctic Peninsula marine environments. Glob. Change Biol. 29, 1791–1808 (2023).

Article 

Google Scholar
 

Testa, G., Piñones, A. & Castro, L. R. Physical and Biogeochemical Regionalization of the Southern Ocean and the CCAMLR Zone 48.1. Front. Mar. Sci. 8, 592378 (2021).

Article 

Google Scholar
 

Kerr, R. et al. Northern Antarctic Peninsula: a marine climate hotspot of rapid changes on ecosystems and ocean dynamics. Deep-Sea Res. II 149, 4–9 (2018).


Google Scholar
 

Holm-Hansen, O. et al. Distribution of phytoplankton and nutrients in relation to different water masses in the area around Elephant Island, Antarctica. Polar Biol. 18, 145–153 (1997).

Article 

Google Scholar
 

Reisser, J. et al. Millimeter-Sized Marine Plastics: A New Pelagic Habitat for Microorganisms and Invertebrates. PLoS ONE 9, e100289 (2014).

Article 

Google Scholar
 

Eriksen, M. et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

Article 

Google Scholar
 

GESAMP Guidelines for the monitoring and assessment of plastic litter in the ocean. GESAMP Rep. Stud. 99, 130 (2019).


Google Scholar
 

ASTM International Standard practice for general techniques for obtaining infrared spectra for qualitative analysis. Annu. Book ASTM Stand. 03, 1–13 (2013).


Google Scholar
 

Debeljak, P. et al. Extracting DNA from ocean microplastics: a method comparison study. Anal. Methods 9, 1521–1523 (2017).

Article 

Google Scholar
 

Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).

Article 

Google Scholar
 

Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

Article 

Google Scholar
 

Amaral-Zettler, L. A. et al. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).

Article 

Google Scholar
 

Choi, J. & Park, J. S. Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Sci. Rep. 10, 63561 (2020).


Google Scholar
 

Lacerda, A. L. et al. Floating plastics and their associated biota in the Western South Atlantic. Sci. Total Environ. 805, 150186 (2022).

Article 

Google Scholar
 

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

Article 

Google Scholar
 

R Core Team. R: a language and environment for statistical computing. R Found. Statist. Comput. https://www.R-project.org/ (2021).

Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

Article 

Google Scholar
 

Guillou, L. et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, 597–604 (2013).

Article 

Google Scholar
 

Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219 (2019).

Article 

Google Scholar
 

Oksanen, J. et al. Vegan: community ecology package. R package version 2.5-6 (R package, 2019).

Wickham, H. Ggplot2: elegant graphics for data analysis. (Springer, 2009).

Heberle, H. et al. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinf.16, 169 (2015).

Article 

Google Scholar
 

Basili, M. et al. Major role of surrounding environment in shaping biofilm community composition on marine plastic debris. Front. Mar. Sci. 7, 262 (2020).

Article 

Google Scholar
 

Audrézet, F. et al. Eco-plastics in the sea: succession of micro- and macro-fouling on a biodegradable polymer augmented with oyster shell. Front. Mar. Sci. 9, 891183 (2022).

Article 

Google Scholar
 

Sun, Y. et al. Plastisphere microbiome: methodology, diversity, and functionality. iMeta 2, e101 (2023).

Article 

Google Scholar
 

Currie, A. A. et al. Sea ice dynamics drive benthic microbial communities in McMurdo Sound, Antarctica. Front. Microbiol. 12, 745915 (2021).

Article 

Google Scholar
 

Soto, D. F., Gómez, I. & Huovinen, P. Antarctic snow algae: unraveling the processes underlying microbial community assembly during blooms formation. Microbiome 11, 200 (2023).

Article 

Google Scholar
 

Fonseca, V. G. et al. Metabarcoding the Antarctic Peninsula biodiversity using a multi-gene approach. ISME Commun. 2, 37 (2022).

Article 

Google Scholar
 

Bryant, J. A. et al. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems 1, e00024-16 (2016).

Article 

Google Scholar
 

Agostini, L. J. et al. Deep-sea plastisphere: long-term colonization by plastic associated bacterial and archaeal communities in the Southwest Atlantic Ocean. Sci. Total Environ. 793, 148335 (2021).

Article 

Google Scholar
 

De Carvalho, C. C. C. R. Marine biofilms: a successful microbial strategy with economic implications. Front. Mar. Sci. 5, 126 (2018).

Article 

Google Scholar
 

Amaral-Zettler, L. A. et al. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).

Article 

Google Scholar
 

Sérvulo, T. et al. Plastisphere composition in a subtropical estuary: influence of season, incubation time and polymer type on plastic biofouling. Environ. Pollut. 332, 121873 (2023).

Article 

Google Scholar
 

Angulo-Preckler, C. et al. Macrobenthic patterns at the shallow marine waters in the caldera of the active volcano of deception island, Antarctica. Cont. Shelf Res. 157, 20–31 (2023).

Article 

Google Scholar
 

Barnes, D. K. A. & Peck, L. S. Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim. Res. 37, 149–163 (2008).

Article 

Google Scholar
 

Delacuvellerie, A. et al. From rivers to marine environments: a constantly evolving microbial community within the plastisphere. Mar. Pollut. Bull. 179, 113660 (2022).

Article 

Google Scholar
 

Luria, C. M., Amaral-Zettler, L. A., Ducklow, H. W. & Rich, J. J. Seasonal succession of free-living bacterial communities in coastal waters of the western Antarctic Peninsula. Front. Microbiol. 7, 1731 (2016).

Article 

Google Scholar
 

Johnston, L. W. et al. Assessment of plastic debris and biofouling in a specially protected area of the Antarctic Peninsula region. Mar. Pollut. Bull. 207, 116844 (2024).

Article 

Google Scholar
 

Monteiro, T. et al. Spatiotemporal variability of dissolved inorganic macronutrients along the northern Antarctic Peninsula (1996–2019). Limnol. Oceanogr. 68, 2305–2326 (2023).

Article 

Google Scholar
 

Signori, C. N. et al. Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula. Front. Microbiol. 5, 647 (2014).

Article 

Google Scholar
 

Sangrà, P. et al. The Bransfield current system. Deep Sea Res. I Oceanogr. Res. Pap. 58, 390–402 (2011).

Article 

Google Scholar
 

Tuuri, E. M. & Leterme, S. C. How plastic debris and associated chemicals impact the marine food web: A review. Environ. Pollut. 321, 121156 (2023).

Article 

Google Scholar
 

Galgani, L. & Loiselle, S. A. Plastic pollution impacts on marine carbon biogeochemistry. Environ. Pollut. 268, 115598 (2021).

Article 

Google Scholar
 

Sekiguchi, T. et al. Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ε-caprolactone)-degrading bacteria. Polym. Degrad. Stab. 96, 1397–1403 (2011).

Article 

Google Scholar
 

Urbanek, A. K., Rymowicz, W. & Mirończuk, A. M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 102, 7669–7678 (2018).

Article 

Google Scholar
 

Balasubramanian, V. et al. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett. Appl. Microbiol. 51, 205–211 (2010).


Google Scholar
 

Biki, S. P. et al. Polyethylene degradation by Ralstonia sp. strain SKM2 and Bacillus sp. strain SM1 isolated from landfill soil site. Environ. Technol. Innov. 22, 101495 (2021).

Article 

Google Scholar
 

Ryan, M. P., Pembroke, J. T. & Adley, C. C. Ralstonia pickettii in environmental biotechnology: potential and applications. J. Appl. Microbiol. 103, 754–764 (2007).

Article 

Google Scholar
 

Delacuvellerie, A. et al. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater. 380, 120899 (2019).

Article 

Google Scholar
 

Raghul, S. S. et al. Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrios. Int. J. Environ. Sci. Technol. 11, 1827–1834 (2014).

Article 

Google Scholar
 

Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic vibrio SPP. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).

Article 

Google Scholar
 

Liu, G. Y. Molecular pathogenesis of staphylococcus aureus infection. Pediatr. Res. 65, 71R–77R (2009).

Article 

Google Scholar
 

Lenoble, V. et al. Bioaccumulation of trace metals in the plastisphere: awareness of environmental risk from a European perspective. Environ. Pollut. 348, 123808 (2024).

Article 

Google Scholar
 

Amaral-Zettler, L. A. et al. The biogeography of the Plastisphere: implications for policy. Front. Ecol. Environ. 13, 541–546 (2015).

Article 

Google Scholar
 

Santos, A. et al. Measuring the effect of climate change in Antarctic microbial communities: toward novel experimental approaches. Curr. Opin. Biotechnol. 81, 102918 (2023).

Article 

Google Scholar
 

Kerfahi, D. et al. Whole community and functional gene changes of biofilms on marine plastic debris in response to ocean acidification. Microb. Ecol. 85, 1202–1214 (2023).

Article 

Google Scholar
 

Harvey, B. P. et al. Ocean acidification alters bacterial communities on marine plastic debris. Mar. Pollut. Bull. 161, 111749 (2020).

Article 

Google Scholar
 

Nguyen, D., Masasa, M., Ovadia, O. & Guttman, L. Ecological insights into the resilience of the marine plastisphere throughout a storm disturbance. Sci. Total Environ. 858, 159775 (2023).

Article 

Google Scholar
 

Ji, L. et al. Future climate change enhances the complexity of plastisphere microbial co-occurrence networks, but does not significantly affect the community assembly. Sci. Total Environ. 844, 157016 (2022).

Article 

Google Scholar
 

Pinnell, L. J. & Turner, J. W. Temporal changes in water temperature and salinity drive the formation of a reversible plastic-specific microbial community. FEMS Microbiol. Ecol. 96, fiaa230 (2020).

Article 

Google Scholar
 

Billaud, M. et al. An increase of seawater temperature upregulates the expression of Vibrio parahaemolyticus virulence factors implicated in adhesion and biofilm formation. Front. Microbiol. 13, 840628 (2022).

Article 

Google Scholar