Betts, P. et al. Australia and Nuna. Geol. Soc. Lond. Special Publications. 424 https://doi.org/10.1144/SP424.2 (2015).

Betts, P. G., Giles, D., Lister, G. S. & Frick, L. R. Evolution of the Australian lithosphere. Aust. J. Earth Sci. 49, 661–695. https://doi.org/10.1046/j.1440-0952.2002.00948.x (2002).

Article 
ADS 

Google Scholar
 

Bagas, L., Bierlein, F. P., Anderson, J. A. C. & Maas, R. Collision-related granitic magmatism in the Granites–Tanami orogen, Western Australia. Precambrian Res. 177, 212–226. https://doi.org/10.1016/j.precamres.2009.12.002 (2010).

Article 
ADS 
CAS 

Google Scholar
 

Goleby, B. R. et al. The Tanami deep seismic reflection experiment: an insight into gold mineralization and paleoproterozoic collision in the North Australian craton. Tectonophysics 472, 169–182. https://doi.org/10.1016/j.tecto.2008.05.031 (2009).

Article 
ADS 
CAS 

Google Scholar
 

Jiang, W. P., Korsch, R. J., Doublier, M. P., Duan, J. M. & Costelloe, R. Mapping deep electrical conductivity structure in the Mount Isa region, Northern Australia: implications for mineral prospectivity. J. Geophys. Res-Sol Ea. 124, 10655–10671. https://doi.org/10.1029/2019jb017528 (2019).

Article 
ADS 

Google Scholar
 

Korsch, R. J. et al. Crustal architecture and geodynamics of North Queensland, Australia: insights from deep seismic reflection profiling. Tectonophysics 572–573, 76–99. https://doi.org/10.1016/j.tecto.2012.02.022 (2012).

Article 
ADS 

Google Scholar
 

Cawood, P. A. & Korsch, R. J. Assembling Australia; proterozoic Building of a continent. Precambrian Res. 166, 1–396. https://doi.org/10.1016/j.precamres.2008.08.006 (2008).

Article 
ADS 
CAS 

Google Scholar
 

Giles, D., Betts, P. G. & Lister, G. S. 1.8-1.5-Ga links between the North and South Australian cratons and the early-middle proterozoic configuration of Australia. Tectonophysics 380, 27–41. https://doi.org/10.1016/j.tecto.2003.11.010 (2004).

Article 
ADS 

Google Scholar
 

Betts, P. G. & Giles, D. The 1800 – 1100 Ma tectonic evolution of Australia. Precambrian Res. 144, 92–125. https://doi.org/10.1016/j.precamres.2005.11.006 (2006).

Article 
ADS 
CAS 

Google Scholar
 

Spaggiari, C. V., Kirkland, C. L., Smithies, R. H., Wingate, M. T. D. & Belousova, E. A. Transformation of an archean craton margin during proterozoic basin formation and magmatism: the Albany–Fraser orogen, Western Australia. Precambrian Res. 266, 440–466. https://doi.org/10.1016/j.precamres.2015.05.036 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Wade, B. P., Kelsey, D. E., Hand, M. & Barovich, K. M. The Musgrave Province: Stitching North, West and South Australia. Precambrian Res. 166, 370–386. https://doi.org/10.1016/j.precamres.2007.05.007 (2008).

Article 
ADS 
CAS 

Google Scholar
 

Selway, K. M., Hand, M., Payne, J. L., Heinson, G. S. & Reid, A. Magnetotelluric constraints on the tectonic setting of Grenville-aged orogenesis in central Australia. J. Geol. Soc. 168, 251–264. https://doi.org/10.1144/0016-76492010-034 (2011).

Article 
ADS 

Google Scholar
 

Smithies, R. H. et al. High-Temperature granite magmatism, Crust-Mantle interaction and the mesoproterozoic intracontinental evolution of the Musgrave Province, central Australia. J. Petrol. 52, 931–958. https://doi.org/10.1093/petrology/egr010 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Smithies, R. H. et al. The mesoproterozoic thermal evolution of the Musgrave Province in central Australia – Plume vs. the geological record. Gondwana Res. 27, 1419–1429. https://doi.org/10.1016/j.gr.2013.12.014 (2015).

Article 
ADS 

Google Scholar
 

Walter, M. R., Veevers, J. J., Calver, C. R. & Grey, K. Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precambrian Res. 73, 173–195. https://doi.org/10.1016/0301-9268(94)00077-5 (1995).

Article 
ADS 
CAS 

Google Scholar
 

Lloyd, J. C., Collins, A. S., Blades, M. L., Gilbert, S. E. & Amos, K. J. Early Evolution of the Adelaide Superbasin. Geosciences 12, 154. https://doi.org/10.3390/geosciences12040154 (2022).

Aitken, A. R. A., Betts, P. G., Weinberg, R. F. & Gray, D. Constrained potential field modeling of the crustal architecture of the Musgrave Province in central Australia: evidence for lithospheric strengthening due to crust-mantle boundary uplift. J. Geophys. Res-Sol Ea. 114 https://doi.org/10.1029/2008jb006194 (2009).

Camacho, A. & McDougall, I. Intracratonic, strike-slip partitioned transpression and the formation and exhumation of eclogite facies rocks: an example from the Musgrave block, central Australia. Tectonics 19, 978–996. https://doi.org/10.1029/1999TC001151 (2000).

Article 
ADS 

Google Scholar
 

Camacho, A., Vernon, R. H. & Fitz Gerald, J. D. Large volumes of anhydrous pseudotachylyte in the Woodroffe thrust, Eastern Musgrave ranges, Australia. J. Struct. Geol. 17, 371–383. https://doi.org/10.1016/0191-8141(94)00069-C (1995). 

Article 
ADS 

Google Scholar
 

Scrimgeour, I. & Close, D. Regional high-pressure metamorphism during intracratonic deformation; the Petermann orogeny, central Australia. J. Metamorph. Geol. 17, 557–572. https://doi.org/10.1046/j.1525-1314.1999.00217.x (1999).

Article 
ADS 
CAS 

Google Scholar
 

Hand, M. & Sandiford, M. Intraplate deformation in central Australia, the link between subsidence and fault reactivation. Tectonophysics 305, 121–140. https://doi.org/10.1016/S0040-1951(99)00009-8 (1999).

Article 
ADS 

Google Scholar
 

Sandiford, M., Hansen, D. L. & Mclaren, S. N. Lower crustal rheological expression in inverted basins. Geol. Soc. Spec. Publ. 253, 271–. https://doi.org/10.1144/Gsl.Sp.2006.253.01.14 (2006).

Article 

Google Scholar
 

Goleby, B. R., Kennett, B. L. N., Wright, C., Shaw, R. D. & Lambeck, K. Seismic-Reflection profiling in the proterozoic Arunta block, central Australia – Processing for testing models of tectonic evolution. Tectonophysics 173, 257–268 https://doi.org/10.1016/0040-1951(90)90222-T (1990).

Article 
ADS 

Google Scholar
 

Goleby, B. R., Wright, C., Collins, C. D. N. & Kennett, B. L. N. Seismic-Reflection and refraction profiling across the Arunta block and the Ngalia and amadeus basins. Aust. J. Earth Sci. 35, 275–294. https://doi.org/10.1080/08120098808729447 (1988).

Article 
ADS 

Google Scholar
 

Goleby, B. R., Shaw, R. D., Wright, C., Kennett, B. L. N. & Lambeck, K. Geophysical evidence for Thick-Skinned crustal deformation in central Australia. Nature 337, 325–330. https://doi.org/10.1038/337325a0 (1989).

Article 
ADS 

Google Scholar
 

Korsch, R. J. & Doublier, M. P. Major crustal boundaries of Australia, and their significance in mineral systems targeting. Ore Geol. Rev. 76, 211–228. https://doi.org/10.1016/j.oregeorev.2015.05.010 (2016).

Article 

Google Scholar
 

Foster, D. A. & Goscombe, B. D. Continental growth and recycling in convergent orogens with large turbidite fans on oceanic crust. Geosciences 3, 354–388. https://doi.org/10.3390/geosciences3030354 (2013).

Article 
ADS 
CAS 

Google Scholar
 

Thiel, S., Goleby, B. R., Pawley, M. & Heinson, G. AusLAMP 3D MT imaging of an intracontinental deformation zone, Musgrave Province, central Australia. Earth Planet Space. 72 https://doi.org/10.1186/s40623-020-01223-0 (2020).

Selway, K., Heinson, G. & Hand, M. Electrical evidence of continental accretion: Steeply-dipping crustal-scale conductivity contrast. Geophys. Res. Lett. 33 https://doi.org/10.1029/2005gl025328 (2006).

Kirkby, A. & Duan, J. M. Crustal structure of the Eastern Arunta region, central Australia, from magnetotelluric, seismic, and magnetic data. J. Geophys. Res-Sol Ea. 124, 9395–9414. https://doi.org/10.1029/2018jb016223 (2019).

Article 
ADS 

Google Scholar
 

Aitken, A. R. A. & Betts, P. G. Constraints on the proterozoic supercontinent cycle from the structural evolution of the south-central Musgrave Province, central Australia. Precambrian Res. 168, 284–300. https://doi.org/10.1016/j.precamres.2008.10.006 (2009).

Article 
ADS 
CAS 

Google Scholar
 

Toma, J. et al. Nuna supercontinent assembly linked to carbon cycling in shear zones 1.9–1.7 billion years ago. Nat. Geosci. 17, 1038–1045. https://doi.org/10.1038/s41561-024-01519-w (2024).

Article 
CAS 

Google Scholar
 

Aitken, A. R. A. & Betts, P. G. Multi-scale integrated structural and aeromagnetic analysis to guide tectonic models: an example from the Eastern Musgrave Province, central Australia. Tectonophysics 476, 418–435. https://doi.org/10.1016/j.tecto.2009.07.007 (2009).

Article 
ADS 

Google Scholar
 

Aitken, A. R. A., Betts, P. G., Schaefer, B. F. & Rye, S. E. Assessing uncertainty in the integration of aeromagnetic data and structural observations in the Deering hills region of the Musgrave Province. Aust. J. Earth Sci. 55, 1127–1138. https://doi.org/10.1080/08120090802266600 (2008).

Article 
ADS 
CAS 

Google Scholar
 

Selway, K., Hand, M., Heinson, G. S. & Payne, J. L. Magnetotelluric constraints on subduction Polarity: reversing reconstruction models for proterozoic Australia. Geology 37, 799–802. https://doi.org/10.1130/G30175a.1 (2009).

Article 
ADS 

Google Scholar
 

Parker, R. L. The magnetotelluric inverse problem. Geophys. Surv. 6, 5–25. https://doi.org/10.1007/BF01453993 (1983).

Article 
ADS 

Google Scholar
 

Lang, S. C., Grech, P., Root, R., Hill, A. & Harrison, D. The application of sequence stratigraphy to exploration and reservoir development in the Cooper-Eromanga-Bowen-Surat basin system. APPEA J. 41, 223–250. https://doi.org/10.1071/AJ00011 (2001).

Article 

Google Scholar
 

Kennett, B. L. N. et al. Refining the Moho across the Australian continent. Geophys. J. Int. 233, 1863–1877. https://doi.org/10.1093/gji/ggad035 (2023).

Article 
ADS 

Google Scholar
 

Yang, X. Origin of high electrical conductivity in the lower continental crust: A review. Surv. Geophys. 32, 875–903. https://doi.org/10.1007/s10712-011-9145-z (2011).

Article 
ADS 

Google Scholar
 

Heinson, G., Didana, Y., Soeffky, P., Thiel, S. & Wise, T. The crustal geophysical signature of a world-class magmatic mineral system. Sci. Rep. 8, 10608. https://doi.org/10.1038/s41598-018-29016-2 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Heinson, G. et al. Lower crustal resistivity signature of an orogenic gold system. Sci. Rep. 11, 15807. https://doi.org/10.1038/s41598-021-94531-8 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kirkby, A. L. et al. Lithospheric architecture of a phanerozoic orogen from magnetotellurics: AusLAMP in the Tasmanides, Southeast Australia. Tectonophysics 793, 228560. https://doi.org/10.1016/j.tecto.2020.228560 (2020).

Article 

Google Scholar
 

Kirkby, A. et al. Lithospheric conductors reveal source regions of convergent margin mineral systems. Sci. Rep. 12, 8190. https://doi.org/10.1038/s41598-022-11921-2 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hoggard, M. et al. Global distribution of sediment-hosted metals controlled by craton edge stability. Nat. Geosci. 13, 504–510. https://doi.org/10.1038/s41561-020-0593-2 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Parnell, J. & Armstrong, J. The importance of carbon in Ni-Cu-PGE deposits. Life with Ore Deposits on Earth, Proceedings of the 15th Sga Biennial Meeting, Vols 1–4, 1405–1408 (2019).

Parnell, J., Brolly, C. & Boyce, A. J. Graphite from palaeoproterozoic enhanced carbon burial, and its metallogenic legacy. Geol. Mag. 158, 1711–1718. https://doi.org/10.1017/S0016756821000583 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Chen, Y. et al. Next-generation seismic model of the Australian crust from synchronous and asynchronous ambient noise imaging. Nat. Commun. 14, 1192–1192. https://doi.org/10.1038/s41467-023-36514-z (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jiang, W., Korsch, R. J., Doublier, M. P., Duan, J. & Costelloe, R. Mapping deep electrical conductivity structure in the Mount Isa region, Northern Australia: implications for mineral prospectivity. J. Geophys. Research: Solid Earth. 124, 10655–10671. https://doi.org/10.1029/2019JB017528 (2019).

Article 
ADS 

Google Scholar
 

Kay, B., Heinson, G. & Brand, K. Crustal magnetotelluric imaging of a paleoproterozoic graphitic suture zone, Curnamona Province, Australia. Gondwana Res. 106, 1–14. https://doi.org/10.1016/j.gr.2021.12.005 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Heinson, G., Kay, B., Loader, L., Robertson, K. & Thiel, S. A global magnetotelluric graphite type locality: Multi-decade, multi-scale studies of the Eyre Peninsula anomaly. Gondwana Res. 105, 388–398. https://doi.org/10.1016/j.gr.2021.09.017 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Heinson, G. et al. Lower crustal resistivity signature of an orogenic gold system. Sci. Rep-Uk. 11 https://doi.org/10.1038/s41598-021-94531-8 (2021).

Li, B., Bagas, L. & Jourdan, F. Tectono-thermal evolution of the palaeoproterozoic Granites–Tanami orogen, North Australian Craton: implications from hornblende and biotite 40Ar/39Ar geochronology. Lithos 206–207, 262–276. https://doi.org/10.1016/j.lithos.2014.08.001 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Boerner, D. E., Kurtz, R. D. & Craven, J. A. Electrical conductivity and Paleo-Proterozoic foredeeps. J. Geophys. Res-Sol Ea. 101, 13775–13791. https://doi.org/10.1029/96jb00171 (1996).

Article 
ADS 

Google Scholar
 

Eguchi, J., Seales, J. & Dasgupta, R. Great oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat. Geosci. 13, 71–. https://doi.org/10.1038/s41561-019-0492-6 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Mänd, K. et al. Palaeoproterozoic oxygenated oceans following the Lomagundi-Jatuli event. Nat. Geosci. 13, 302–. https://doi.org/10.1038/s41561-020-0558-5 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Ouyang, G. et al. Dynamic carbon and sulfur cycling in the aftermath of the Lomagundi-Jatuli event: evidence from the paleoproterozoic Hutuo supergroup, North China craton. Precambrian Res. 337 https://doi.org/10.1016/j.precamres.2019.105549 (2020).

Parnell, J. & Brolly, C. Increased biomass and carbon burial 2 billion years ago triggered mountain Building. Commun. Earth Environ. 2 https://doi.org/10.1038/s43247-021-00313-5 (2021).

Yoshino, T. & Noritake, F. Unstable graphite films on grain boundaries in crustal rocks. Earth Planet. Sci. Lett. 306, 186–192. https://doi.org/10.1016/j.epsl.2011.04.003 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Glover, P. W. J. Graphite and electrical conductivity in the lower continental crust: A review. Phys. Chem. Earth. 21, 279–287. https://doi.org/10.1016/S0079-1946(97)00049-9 (1996).

Article 
ADS 

Google Scholar
 

Chamalaun, F. H., Lilley, F. E. M. & Wang, L. J. Mapping the carpentaria conductivity anomaly in Northern Australia. Phys. Earth Planet. Inter. 116, 105–115. https://doi.org/10.1016/S0031-9201(99)00126-0 (1999).

Article 
ADS 

Google Scholar
 

Wex, S., Mancktelow, N. S., Hawemann, F., Camacho, A. & Pennacchioni, G. Geometry of a large-scale, low-angle, midcrustal thrust (Woodroffe thrust, central Australia). Tectonics 36, 2447–2476. https://doi.org/10.1002/2017tc004681 (2017).

Article 
ADS 

Google Scholar
 

Goleby, B. R., Wright, C. & Kennett, B. L. N. Preliminary deep reflection studies in the Arunta block, central Australia. Geophys. J. Int. 89, 437–441. https://doi.org/10.1111/j.1365-246X.1987.tb04443.x (1987).

Article 
ADS 

Google Scholar
 

Korsch, R. J., Goleby, B. R., Leven, J. H. & Drummond, B. J. Crustal architecture of central Australia based on deep seismic reflection profiling. Tectonophysics 288, 57–69. https://doi.org/10.1016/S0040-1951(97)00283-7 (1998).

Article 
ADS 

Google Scholar
 

Brocher, T. M. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 95, 2081–2092. https://doi.org/10.1785/0120050077 (2005).

Article 

Google Scholar
 

Chen, W., Tan, X. & Tenzer, R. Gravity forward modelling software with user-friendly interface. Geophys. Prospect. 72, 2994–3007. https://doi.org/10.1111/1365-2478.13570 (2024).

Article 

Google Scholar
 

Roy, L. Short note: source geometry identification by simultaneous use of structural index and shape factor. Geophys. Prospect. 49, 159–164. https://doi.org/10.1046/j.1365-2478.2001.00239.x (2001).

Article 
ADS 

Google Scholar
 

Pearce, M. A., Wheeler, J. & Prior, D. J. Relative strength of mafic and felsic rocks during amphibolite facies metamorphism and deformation. J. Struct. Geol. 33, 662–675. https://doi.org/10.1016/j.jsg.2011.01.002 (2011).

Article 
ADS 

Google Scholar
 

Jiang, W. et al. Application of multiscale magnetotelluric data to mineral exploration: an example from the East Tennant region, Northern Australia. Geophys. J. Int. 229, 1628–1645. https://doi.org/10.1093/gji/ggac029 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kay, B., Heinson, G. & Boren, G. Multiscale resistivity mapping from an intracontinental hydrothermal mineral system, Adelaide rift complex, Australia. Gondwana Res. 129, 292–304. https://doi.org/10.1016/j.gr.2023.12.012 (2024).

Article 
ADS 

Google Scholar
 

Robertson, K., Heinson, G. & Thiel, S. Lithospheric reworking at the Proterozoic–Phanerozoic transition of Australia imaged using AusLAMP magnetotelluric data. Earth Planet. Sci. Lett. 452, 27–35. https://doi.org/10.1016/j.epsl.2016.07.036 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Robertson, K. E., Heinson, G. S., Taylor, D. H. & Thiel, S. The lithospheric transition between the Delamerian and Lachlan orogens in Western Victoria: new insights from 3D magnetotelluric imaging. Aust. J. Earth Sci. 64, 385–399. https://doi.org/10.1080/08120099.2017.1292953 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Tietze, K., Thiel, S., Brand, K. & Heinson, G. Comparative 3D inversion of magnetotelluric phase tensors and impedances reveals electrically anisotropic base of Gawler craton, South Australia. Explor. Geophys. https://doi.org/10.1080/08123985.2023.2281615 (2023).

Article 

Google Scholar
 

Lilley, F. E. M. et al. In Evolution and Dynamics of the Australian PlateVol. 3720 (Geological Society of America, 2003).

Chave, A. D. & Thomson, D. J. Bounded influence magnetotelluric response function Estimation. Geophys. J. Int. 157, 988–1006. https://doi.org/10.1111/j.1365-246X.2004.02203.x (2004).

Article 
ADS 

Google Scholar
 

Chave, A. D. & Thomson, D. J. A bounded influence regression estimator based on the statistics of the hat matrix. J. R Stat. Soc. C-Appl. 52, 307–322. https://doi.org/10.1111/1467-9876.00406 (2003).

Article 
MathSciNet 

Google Scholar
 

Krieger, L., Peacock, J. R. & MTpy A Python toolbox for magnetotellurics. Comput. Geosci. 72, 167–175. https://doi.org/10.1016/j.cageo.2014.07.013 (2014).

Article 
ADS 

Google Scholar
 

Mackie, R. L. & Madden, T. R. 3-Dimensional magnetotelluric inversion using conjugate gradients. Geophys. J. Int. 115, 215–229. https://doi.org/10.1111/j.1365-246X.1993.tb05600.x (1993).

Article 
ADS 

Google Scholar
 

Rodi, W. & Mackie, R. L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66, 174–187. https://doi.org/10.1190/1.1444893 (2001).

Article 
ADS 

Google Scholar
 

Kuvshinov, A., Grayver, A., Tøffner-Clausen, L. & Olsen, N. Probing 3-D electrical conductivity of the mantle using 6 years of swarm, CryoSat-2 and observatory magnetic data and exploiting matrix Q-responses approach. Earth Planet Space. 73, 67. https://doi.org/10.1186/s40623-020-01341-9 (2021).

Article 
ADS 

Google Scholar
 

Yoshizawa, K. & Kennett, B. L. N. The lithosphere-asthenosphere transition and radial anisotropy beneath the Australian continent. Geophys. Res. Lett. 42, 3839–3846. https://doi.org/10.1002/2015GL063845 (2015).

Article 
ADS 

Google Scholar