Földvári G. Life cycle and ecology of Ixodes ricinus: the roots of public health importance. In: Takken A, Sprong H, van Wieren SE, Braks AHM, editors. Ecology and prevention of Lyme borreliosis, vol. 4. Wageningen: Wageningen Academic Publishers; 2016. p. 31–40.
Rochlin I, Toledo A. Emerging tick-borne pathogens of public health importance: a mini-review. J Med Microbiol. 2020;69:781–91.
Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol. 2012;28:437–46.
Kernif T, Leulmi H, Raoult D, Parola P. Emerging tick-borne bacterial pathogens. Microbiol Spectr. 2016;4:ei10-0012-2016.
Vandekerckhove O, De Buck E, Van Wijngaerden E. Lyme disease in Western Europe: an emerging problem? A systematic review Acta Clin Belg. 2019;76:244–52.
Marques A, Strle F, Wormser GP. Comparison of Lyme disease in the United States and Europe. Emerg Infect Dis. 2021;27:2017–24.
Mather TN, Nicholson MC, Donnelly EF, Matyas BT. Entomologic index for human risk of Lyme disease. Am J Epidemiol. 1996;144:1066–9.
Jaenson TGT, Eisen L, Comstedt P, Mejlon HA, Lindgren E, Bergström E, et al. Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med Vet Entomol. 2009;23:226–37.
Sormunen JJ, Klemola T, Hänninen J, Mäkelä S, Vuorinen I, Penttinen R, et al. The importance of study duration and spatial scale in pathogen detection—evidence from a tick-infested island. Emerg Microbes Infect. 2018;7:189.
Sormunen JJ, Kulha N, Klemola T, Mäkelä S, Vesilahti EM, Vesterinen EJ. Enhanced threat of tick-borne infections within cities? Assessing public health risks due to ticks in urban green spaces in Helsinki Finland. Zoonoses Pub Health. 2020;67:822–38.
James MC, Bowman AS, Forbes KJ, Lewis F, McLeod JE, Gilbert L. Environmental determinants of Ixodes ricinus ticks and the incidence of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in Scotland. Parasitology. 2013;140:237–46.
Millins C, Gilbert L, Johnson P, James M, Kilbride E, Birtles R, et al. Heterogeneity in the abundance and distribution of Ixodes ricinus and Borrelia burgdorferi (sensu lato) in Scotland: implications for risk prediction. Parasit Vectors. 2016;9:595.
Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygård K, et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit Vectors. 2011;4:84.
Jaenson TGT, Jaenson DG, Eisen L, Petersson E, Lindgren E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit Vectors. 2012;5:8.
Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors. 2013;6:1.
Sormunen JJ, Klemola T, Vesterinen EJ, Vuorinen I, Hytönen J, Hänninen J, et al. Assessing the abundance, seasonal questing activity, and Borrelia and tick-borne encephalitis virus (TBEV) prevalence of Ixodes ricinus ticks in a Lyme borreliosis endemic area in Southwest Finland. Ticks Tick Borne Dis. 2016;7:208–15.
Soleng A, Edgar KS, Paulsen KM, Pedersen BN, Okbaldet YB, Skjetne IEB, et al. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks Tick Borne Dis. 2018;9:97–103.
Sormunen JJ, Sääksjärvi IE, Vesterinen EJ, Klemola T. Crowdsourced tick observation data from across 60 years reveals major increases and northwards shifts in tick contact areas in Finland. Sci Rep. 2023;13:21274.
Finnish Meteorological Institute. Temperature and precipitation statistics from 1961 onwards. 2025. https://en.ilmatieteenlaitos.fi/statistics-from-1961-onwards. Accessed 24 Feb 2025.
Aalto J, Pirinen P, Kauppi PE, Rantanen M, Lussana C, Lyytikäinen-Saarenmaa P, et al. High-resolution analysis of observed thermal growing season variability over northern Europe. Clim Dyn. 2021;58:1477–93.
Buczek A, Ciura D, Bartosik K, Zając Z, Kulisz J. Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit Vectors. 2014;7:562.
Cayol C, Koskela E, Mappes T, Siukkola A, Kallio ER. Temporal dynamics of the tick Ixodes ricinus in northern Europe: epidemiological implications. Parasit Vectors. 2017;10:166.
Hartemink N, van Vliet A, Sprong H, Jacobs F, Garcia-Martí I, Zurita-Milla R, et al. Temporal-spatial variation in questing tick activity in the Netherlands: the effect of climatic and habitat factors. Vector Borne Zoonotic Dis. 2019;19:494–505.
Peralbo-Moreno A, Espí A, Barandika JF, García-Pérez AL, Acevedo P, Ruiz-Fons F. Spatiotemporal dynamics of Ixodes ricinus abundance in northern Spain. Ticks Tick Borne Dis. 2024;15:102373.
Gray JS, Kahl O, Lane RS, Levin ML, Tsao JI. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis. 2016;7:992–1003.
Dantas-Torres F, Otranto D. Seasonal dynamics of Ixodes ricinus on ground level and higher vegetation in a preserved wooded area in southern Europe. Vet Parasitol. 2013;192:253–8.
Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis. 2009;2009:593232.
Ostfeld RS, Brunner JL. Climate change and Ixodes tick-borne diseases of humans. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140051.
Ogden NH, Lindsay LR. Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol. 2016;32:646–56.
Nielebeck C, Kim SH, Pepe A, Himes L, Miller Z, Zummo S, et al. Climatic stress decreases tick survival but increases rate of host-seeking behavior. Ecosphere. 2023;14:e4369.
Hubálek Z, Halouzka J, Juricová Z. Host-seeking activity of ixodid ticks in relation to weather variables. J Vector Ecol. 2003;28:159–65.
Lane RS, Mun J, Peribáñez MA, Stubbs HA. Host-seeking behavior of Ixodes pacificus (Acari: Ixodidae) nymphs in relation to environmental parameters in dense-woodland and woodland-grass habitats. J Vector Ecol. 2007;32:342–57.
Kiewra D, Kryza M, Szymanowski M. Influence of selected meteorological variables on the questing activity of Ixodes ricinus ticks in Lower Silesia. SW Poland J Vector Ecol. 2014;39:138–45.
Berger KA, Ginsberg HS, Gonzalez L, Mather TN. Relative humidity and activity patterns of Ixodes scapularis (Acari: ixodidae). J Med Entomol. 2014;51:769–76.
Daniel M, Maly M, Danielová V, Kriz B, Nuttall P. Abiotic predictors and annual seasonal dynamics of Ixodes ricinus, the major disease vector of Central Europe. Parasit Vectors. 2015;18:478.
Randolph SE. Ecology of non-nidicolous ticks. In: Sonenshine DE, Roe RM, editors. Biology of ticks, vol. 2. 2nd ed. New York: Oxford University Press; 2013. p. 3–38.
Perret JL, Guigoz E, Rais O, Gern L. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res. 2000;86:554–7.
Gethmann J, Hoffmann B, Kasbohm E, Süss J, Habedank B, Conraths FJ, et al. Research paper on abiotic factors and their influence on Ixodes ricinus activity—observations over a two-year period at several tick collection sites in Germany. Parasitol Res. 2020;119:1455–66.
Finnish Institute for Health and Welfare. TBE, or tick vaccine. 2025. https://thl.fi/en/topics/infectious-diseases-and-vaccinations/vaccines-a-to-z/tbe-or-tick-vaccine. Accessed 27 Feb 2025.
Weather Station Nagu. NOAA Annual Statistics. 2025a. https://rosti.fi/saa/noaa-vuositilasto/?lang=en. Accessed 24 Feb 2025.
Tack W, Madder M, De Frenne P, Vanhellemont M, Gruwez R, Verheyen K. The effects of sampling method and vegetation type on the estimated abundance of Ixodes ricinus ticks in forests. Exp Appl Acarol. 2011;54:285–92.
Sormunen JJ, Sippola E, Kaunisto KM, Vesterinen EJ, Sääksjärvi IE. First evidence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) parasitization in Finnish castor bean ticks (Ixodes ricinus). Exp Appl Acarol. 2019;79:395–404.
Vassalo M, Paul RE, Pérez-Eid C. Temporal distribution of the annual nymphal stock of Ixodes ricinus ticks. Exp Appl Acarol. 2000;24:941–9.
Lauterbach R, Wells K, O’Hara RB, Kalko EK, Renner SC. Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests. PLoS ONE. 2013;8:e55365.
Weather Station Nagu. NOAA Monthly Statistics. 2025b. https://rosti.fi/saa/noaa-kuukausitilastot/?lang=en. Accessed 24 Feb 2025.
Sormunen JJ, Andersson T, Aspi J, Bäck J, Cederberg T, Haavisto N, et al. Monitoring of ticks and tick-borne pathogens through a nationwide research station network in Finland. Ticks Tick Borne Dis. 2020;11:101449.
Bolker BM. Linear and generalized linear mixed models. In: Fox GA, Negrete-Yankelevich S, Sosa VJ, editors. Ecological Statistics. Oxford: Oxford University Press; 2015. p. 309–33.
Littell RC. SAS for mixed models. 2nd ed. Gary: SAS Institute; 2006.
Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53:983–97.
Dobson ADM, Randolph SE. Modelling the effects of recent changes in climate, host density and acaricide treatments on population dynamics of Ixodes ricinus in the UK. J Appl Ecol. 2011;48:1029–37.
Grandi G, Chitimia-Dobler L, Choklikitumnuey P, Strube C, Springer A, Albihn A, et al. First records of adult Hyalomma marginatum and H. rufipes ticks (Acari: Ixodidae) in Sweden. Ticks Tick Borne Dis. 2020;11:101403.
McGinley L, Hansford KM, Cull B, Gillingham EL, Carter DP, Chamberlain JF, et al. First report of human exposure to Hyalomma marginatum in England: further evidence of a Hyalomma moulting event in north-western Europe? Ticks Tick Borne Dis. 2021;12:101541.
Qviller L, Grøva L, Viljugrein H, Klingen I, Mysterud A. Temporal pattern of questing tick Ixodes ricinus density at differing elevations in the coastal region of western Norway. Parasit Vectors. 2014;7:179.
Hauser G, Rais O, Morán Cadenas F, Gonseth Y, Bouzelboudjen M, Gern L. Influence of climatic factors on Ixodes ricinus nymph abundance and phenology over a long-term monthly observation in Switzerland (2000–2014). Parasit Vectors. 2018;11:289.
Uspensky I. The taiga tick Ixodes persulcatus (Acari: Ixodidae), the main vector of Borrelia burgdorferi sensu lato in Eurasia. In: Lyme disease. Dove: SMGroup; 2016. p. 8–16.
Alonso-Carné J, García-Martín A, Estrada-Peña A. Assessing the statistical relationships among water-derived climate variables, rainfall, and remotely sensed features of vegetation: implications for evaluating the habitat of ticks. Exp Appl Acarol. 2015;65:107–24.
Kröber T, Guerin PM. Ixodid ticks avoid contact with liquid water. J Exp Biol. 1999;202:1877–83.