Hemmati-Sarapardeh, A., Dabir, B., Ahmadi, M., Mohammadi, A. H. & Husein, M. M. Toward mechanistic Understanding of asphaltene aggregation behavior in toluene: the roles of asphaltene structure, aging time, temperature, and ultrasonic radiation. J. Mol. Liq. 264, 410–424 (2018).


Google Scholar
 

Khishvand, M. & Naseri, A. An artificial neural network approach to predict asphaltene deposition test result. Fluid. Phase. Equilibria. 329, 32–41 (2012).


Google Scholar
 

Kord, S. & Ayatollahi, S. Asphaltene precipitation in live crude oil during natural depletion: experimental investigation and modeling. Fluid. Phase. Equilibria. 336, 63–70 (2012).


Google Scholar
 

Hemmati-Sarapardeh, A. et al. Asphaltene precipitation due to natural depletion of reservoir: determination using a SARA fraction based intelligent model. Fluid. Phase. Equilibria. 354, 177–184 (2013).


Google Scholar
 

Hemmati-Sarapardeh, A., Ameli, F., Dabir, B., Ahmadi, M. & Mohammadi, A. H. On the evaluation of asphaltene precipitation Titration data: modeling and data assessment. Fluid. Phase. Equilibria. 415, 88–100 (2016).


Google Scholar
 

Adyani, W. N. et al. A systematic approach to evaluate asphaltene precipitation during CO2 injection. SPE Asia Pacific Enhanced Oil Recovery Conference. SPE; :SPE-143903-MS. (2011).

Kord, S., Soleymanzadeh, A. & Miri, R. A generalized scaling equation to predict asphaltene precipitation during precipitant dilution, natural depletion, water injection and gas injection. J. Petrol. Sci. Eng. 182, 106320 (2019).


Google Scholar
 

Soleimani, Y., Mohammadi, M-R., Schaffie, M., Zabihi, R. & Ranjbar, M. An experimental study of the effects of bacteria on asphaltene adsorption and wettability alteration of dolomite and quartz. Sci. Rep. 13 (1), 21497 (2023).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Blunt, M., Fayers, F. J. & Orr, F. M. Jr Carbon dioxide in enhanced oil recovery. Energy. Conv. Manag. 34 (9–11), 1197–1204 (1993).

ADS 

Google Scholar
 

Mehta¹, R. N. & Jain, V. R. Microbial enhanced oil recovery. Separation Processes: Emerging Technologies for Sustainable Development. :434. (2009).

Porte, G., Zhou, H. & Lazzeri, V. Reversible description of asphaltene colloidal association and precipitation. Langmuir 19 (1), 40–47 (2003).


Google Scholar
 

Hirschberg, A., deJong, L. N., Schipper, B. & Meijer, J. Influence of temperature and pressure on asphaltene flocculation. Soc. Petrol. Eng. J. 24 (03), 283–293 (1984).


Google Scholar
 

Pan, H., Firoozabadi, A. & Fotland, P. Pressure and composition effect on wax precipitation: experimental data and model results. SPE Prod. Facil. 12 (04), 250–258 (1997).


Google Scholar
 

Tharanivasan, A. K. et al. Measurement and modeling of asphaltene precipitation from crude oil blends. Energy Fuels. 23 (8), 3971–3980 (2009).


Google Scholar
 

Karambeigi, M. & Kharrat, R. Asphaltene precipitation during different production operations. Pet. Sci. Technol. 32 (14), 1655–1660 (2014).


Google Scholar
 

Jafari Behbahani, T., Miranbeigi, A., Sharifi, K. & Jafari Behbahani, Z. A new investigation on asphaltene precipitation: experimental and a new thermodynamic approach. Pet. Chem. 58, 622–629 (2018).


Google Scholar
 

Hemmati-Sarapardeh, A. et al. Modeling asphaltene precipitation during natural depletion of reservoirs and evaluating screening criteria for stability of crude oils. J. Petrol. Sci. Eng. 181, 106127 (2019).


Google Scholar
 

Ali, S. I. et al. Critical analysis of different techniques used to screen asphaltene stability in crude oils. Fuel 299, 120874 (2021).


Google Scholar
 

Sulaimon, A. A. et al. Developing new correlations for asphaltene deposition involving SARA fractions and colloidal instability index. J. Petrol. Sci. Eng. 220, 111143 (2023).


Google Scholar
 

Khalighi, J. & Cheremisin, A. Comparative study of machine learning algorithms in predicting asphaltene precipitation with a novel validation technique. Earth Sci. Inf. 16 (4), 3097–3111 (2023).

ADS 

Google Scholar
 

Kord, S., Miri, R., Ayatollahi, S. & Escrochi, M. Asphaltene deposition in carbonate rocks: experimental investigation and numerical simulation. Energy Fuels. 26 (10), 6186–6199 (2012).


Google Scholar
 

Zendehboudi, S. et al. Asphaltene precipitation and deposition in oil reservoirs–Technical aspects, experimental and hybrid neural network predictive tools. Chem. Eng. Res. Des. 92 (5), 857–875 (2014).


Google Scholar
 

Ghasemi, S., Behbahani, T. J., Mohammadi, M., Ehsani, M. R. & Khaz’ali, A. R. Experimental investigation and thermodynamic modeling of asphaltene precipitation during pressure depletion and gas injection at HPHT conditions in live oil using PC-SAFT EoS. Fluid. Phase. Equilibria. 562, 113549 (2022).


Google Scholar
 

Frigge, M., Hoaglin, D. C. & Iglewicz, B. Some implementations of the boxplot. Am. Stat. 43 (1), 50–54 (1989).


Google Scholar
 

Potter, K., Hagen, H., Kerren, A. & Dannenmann, P. Methods for presenting statistical information: the box plot. VLUDS.1, 97–106 (2006).


Google Scholar
 

Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst., 3147–3155 (2017).

Csizmadia, G., Liszkai-Peres, K., Ferdinandy, B., Miklósi, Á. & Konok, V. Human activity recognition of children with wearable devices using LightGBM machine learning. Sci. Rep. 12 (1), 5472 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Fan, J. et al. Light gradient boosting machine: an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric. Water Manage. 225, 105758 (2019).


Google Scholar
 

Mahdaviara, M., Sharifi, M., Bakhshian, S. & Shokri, N. Prediction of spontaneous imbibition in porous media using deep and ensemble learning techniques. Fuel 329, 125349 (2022).


Google Scholar
 

Zhou, B. et al. Pressure of different gases injected into large-scale coal matrix: analysis of time–space dependence and prediction using light gradient boosting machine. Fuel 279, 118448 (2020).


Google Scholar
 

Nakhaei-Kohani, R. et al. Extensive data analysis and modelling of carbon dioxide solubility in ionic liquids using chemical structure-based ensemble learning approaches. Fluid. Phase. Equilibria. 585, 114166 (2024).


Google Scholar
 

Mahmoudzadeh, A. et al. Modeling CO2 solubility in water using gradient boosting and light gradient boosting machine. Sci. Rep. 14 (1), 13511 (2024).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Natekin, A. & Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics. 7, 21 (2013).


Google Scholar
 

Rashidi-Khaniabadi, A., Rashidi-Khaniabadi, E., Amiri-Ramsheh, B., Mohammadi, M-R. & Hemmati-Sarapardeh, A. Modeling interfacial tension of surfactant–hydrocarbon systems using robust tree-based machine learning algorithms. Sci. Rep. 13 (1), 10836 (2023).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 54, 1937–1967 (2021).


Google Scholar
 

Zhang, J. et al. A unified intelligent model for estimating the (gas + n-alkane) interfacial tension based on the eXtreme gradient boosting (XGBoost) trees. Fuel 282, 118783 (2020).


Google Scholar
 

Mohammadi, M-R. et al. Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state. Sci. Rep. 11 (1), 17911 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, T., Guestrin, C. & Xgboost A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. :785 – 94. (2016).

Peiro Ahmady Langeroudy, K., Kharazi Esfahani, P. & Khorsand Movaghar, M. R. Enhanced intelligent approach for determination of crude oil viscosity at reservoir conditions. Sci. Rep. 13 (1), 1666 (2023).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Mohammadi, M-R. et al. Application of robust machine learning methods to modeling hydrogen solubility in hydrocarbon fuels. Int. J. Hydrog. Energy. 47 (1), 320–338 (2022).

ADS 

Google Scholar
 

Markovic, S. et al. Application of XGBoost model for in-situ water saturation determination in Canadian oil-sands by LF-NMR and density data. Sci. Rep. 12 (1), 13984 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Fahlman, S. & Lebiere, C. The cascade-correlation learning architecture. Adv. Neural. Inf. Process. Syst.2, 524–532 (1989).

Thanh, H. V., Dashtgoli, D. S., Zhang, H. & Min, B. Machine-learning-based prediction of oil recovery factor for experimental CO2-Foam chemical EOR: implications for carbon utilization projects. Energy 278, 127860 (2023).


Google Scholar
 

Amiri-Ramsheh, B., Zabihi, R. & Hemmati-Sarapardeh, A. Modeling wax deposition of crude oils using cascade forward and generalized regression neural networks: application to crude oil production. Geoenergy Sci. Eng. 224, 211613 (2023).


Google Scholar
 

Dong, B., Yang, K., Zhang, W., Yin, J. & Wang, D. An improved method for PWR fuel failure detection using Cascade-forward neural network with decision tree. Front. Energy Res. 10, 851848 (2022).


Google Scholar
 

Zheng, Y. et al. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew. Energy. 153, 1296–1306 (2020).


Google Scholar
 

Zeng, J., Jamei, M., Nait Amar, M., Hasanipanah, M. & Bayat, P. A novel solution for simulating air overpressure resulting from blasting using an efficient cascaded forward neural network. Eng. Comput. 38 (Suppl 3), 2069–2081 (2022).


Google Scholar
 

Specht, D. F. A general regression neural network. IEEE Trans. Neural Networks. 2 (6), 568–576 (1991).

PubMed 

Google Scholar
 

Rooki, R. Application of general regression neural network (GRNN) for indirect measuring pressure loss of Herschel–Bulkley drilling fluids in oil drilling. Measurement 85, 184–191 (2016).

ADS 

Google Scholar
 

Antanasijević, D., Pocajt, V., Ristić, M. & Perić-Grujić, A. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks. Energy 84, 816–824 (2015).


Google Scholar
 

Cigizoglu, H. K. Generalized regression neural network in monthly flow forecasting. Civil Eng. Environ. Syst. 22 (2), 71–81 (2005).


Google Scholar
 

Naghizadeh, A. et al. Modeling thermal conductivity of hydrogen-based binary gaseous mixtures using generalized regression neural network. Int. J. Hydrog. Energy. 59, 242–250 (2024).

ADS 

Google Scholar
 

Li, G. et al. Application of general regression neural network to model a novel integrated fluidized bed gasifier. Int. J. Hydrog. Energy. 43 (11), 5512–5521 (2018).

ADS 

Google Scholar
 

Cigizoglu, H. K. & Alp, M. Generalized regression neural network in modelling river sediment yield. Adv. Eng. Softw. 37 (2), 63–68 (2006).


Google Scholar
 

Hemmati-Sarapardeh, A., Larestani, A., Menad, N. A. & Hajirezaie, S. Applications of Artificial Intelligence Techniques in the Petroleum Industry (Gulf Professional Publishing, 2020).

De Boer, R., Leerlooyer, K., Eigner, M. & Van Bergen, A. Screening of crude oils for asphalt precipitation: theory, practice, and the selection of inhibitors. SPE Prod. Facil. 10 (01), 55–61 (1995).


Google Scholar
 

Burke, N. E., Hobbs, R. E. & Kashou, S. F. Measurement and modeling of asphaltene precipitation (includes associated paper 23831). J. Petrol. Technol. 42 (11), 1440–1446 (1990).


Google Scholar
 

Hemmati-Sarapardeh, A., Aminshahidy, B., Pajouhandeh, A., Yousefi, S. H. & Hosseini-Kaldozakh, S. A. A soft computing approach for the determination of crude oil viscosity: light and intermediate crude oil systems. J. Taiwan Inst. Chem. Eng. 59, 1–10 (2016).


Google Scholar
 

Shateri, M., Ghorbani, S., Hemmati-Sarapardeh, A. & Mohammadi, A. H. Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor. J. Taiwan Inst. Chem. Eng. 50, 131–141 (2015).


Google Scholar
 

Rousseeuw, P. J. & Leroy, A. M. Robust Regression and Outlier Detection (Wiley, 2005).

Farasat, A., Shokrollahi, A., Arabloo, M., Gharagheizi, F. & Mohammadi, A. H. Toward an intelligent approach for determination of saturation pressure of crude oil. Fuel Process. Technol. 115, 201–214 (2013).


Google Scholar