Hemmati-Sarapardeh, A., Dabir, B., Ahmadi, M., Mohammadi, A. H. & Husein, M. M. Toward mechanistic Understanding of asphaltene aggregation behavior in toluene: the roles of asphaltene structure, aging time, temperature, and ultrasonic radiation. J. Mol. Liq. 264, 410–424 (2018).
Khishvand, M. & Naseri, A. An artificial neural network approach to predict asphaltene deposition test result. Fluid. Phase. Equilibria. 329, 32–41 (2012).
Kord, S. & Ayatollahi, S. Asphaltene precipitation in live crude oil during natural depletion: experimental investigation and modeling. Fluid. Phase. Equilibria. 336, 63–70 (2012).
Hemmati-Sarapardeh, A. et al. Asphaltene precipitation due to natural depletion of reservoir: determination using a SARA fraction based intelligent model. Fluid. Phase. Equilibria. 354, 177–184 (2013).
Hemmati-Sarapardeh, A., Ameli, F., Dabir, B., Ahmadi, M. & Mohammadi, A. H. On the evaluation of asphaltene precipitation Titration data: modeling and data assessment. Fluid. Phase. Equilibria. 415, 88–100 (2016).
Adyani, W. N. et al. A systematic approach to evaluate asphaltene precipitation during CO2 injection. SPE Asia Pacific Enhanced Oil Recovery Conference. SPE; :SPE-143903-MS. (2011).
Kord, S., Soleymanzadeh, A. & Miri, R. A generalized scaling equation to predict asphaltene precipitation during precipitant dilution, natural depletion, water injection and gas injection. J. Petrol. Sci. Eng. 182, 106320 (2019).
Soleimani, Y., Mohammadi, M-R., Schaffie, M., Zabihi, R. & Ranjbar, M. An experimental study of the effects of bacteria on asphaltene adsorption and wettability alteration of dolomite and quartz. Sci. Rep. 13 (1), 21497 (2023).
Blunt, M., Fayers, F. J. & Orr, F. M. Jr Carbon dioxide in enhanced oil recovery. Energy. Conv. Manag. 34 (9–11), 1197–1204 (1993).
Mehta¹, R. N. & Jain, V. R. Microbial enhanced oil recovery. Separation Processes: Emerging Technologies for Sustainable Development. :434. (2009).
Porte, G., Zhou, H. & Lazzeri, V. Reversible description of asphaltene colloidal association and precipitation. Langmuir 19 (1), 40–47 (2003).
Hirschberg, A., deJong, L. N., Schipper, B. & Meijer, J. Influence of temperature and pressure on asphaltene flocculation. Soc. Petrol. Eng. J. 24 (03), 283–293 (1984).
Pan, H., Firoozabadi, A. & Fotland, P. Pressure and composition effect on wax precipitation: experimental data and model results. SPE Prod. Facil. 12 (04), 250–258 (1997).
Tharanivasan, A. K. et al. Measurement and modeling of asphaltene precipitation from crude oil blends. Energy Fuels. 23 (8), 3971–3980 (2009).
Karambeigi, M. & Kharrat, R. Asphaltene precipitation during different production operations. Pet. Sci. Technol. 32 (14), 1655–1660 (2014).
Jafari Behbahani, T., Miranbeigi, A., Sharifi, K. & Jafari Behbahani, Z. A new investigation on asphaltene precipitation: experimental and a new thermodynamic approach. Pet. Chem. 58, 622–629 (2018).
Hemmati-Sarapardeh, A. et al. Modeling asphaltene precipitation during natural depletion of reservoirs and evaluating screening criteria for stability of crude oils. J. Petrol. Sci. Eng. 181, 106127 (2019).
Ali, S. I. et al. Critical analysis of different techniques used to screen asphaltene stability in crude oils. Fuel 299, 120874 (2021).
Sulaimon, A. A. et al. Developing new correlations for asphaltene deposition involving SARA fractions and colloidal instability index. J. Petrol. Sci. Eng. 220, 111143 (2023).
Khalighi, J. & Cheremisin, A. Comparative study of machine learning algorithms in predicting asphaltene precipitation with a novel validation technique. Earth Sci. Inf. 16 (4), 3097–3111 (2023).
Kord, S., Miri, R., Ayatollahi, S. & Escrochi, M. Asphaltene deposition in carbonate rocks: experimental investigation and numerical simulation. Energy Fuels. 26 (10), 6186–6199 (2012).
Zendehboudi, S. et al. Asphaltene precipitation and deposition in oil reservoirs–Technical aspects, experimental and hybrid neural network predictive tools. Chem. Eng. Res. Des. 92 (5), 857–875 (2014).
Ghasemi, S., Behbahani, T. J., Mohammadi, M., Ehsani, M. R. & Khaz’ali, A. R. Experimental investigation and thermodynamic modeling of asphaltene precipitation during pressure depletion and gas injection at HPHT conditions in live oil using PC-SAFT EoS. Fluid. Phase. Equilibria. 562, 113549 (2022).
Frigge, M., Hoaglin, D. C. & Iglewicz, B. Some implementations of the boxplot. Am. Stat. 43 (1), 50–54 (1989).
Potter, K., Hagen, H., Kerren, A. & Dannenmann, P. Methods for presenting statistical information: the box plot. VLUDS.1, 97–106 (2006).
Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst., 3147–3155 (2017).
Csizmadia, G., Liszkai-Peres, K., Ferdinandy, B., Miklósi, Á. & Konok, V. Human activity recognition of children with wearable devices using LightGBM machine learning. Sci. Rep. 12 (1), 5472 (2022).
Fan, J. et al. Light gradient boosting machine: an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric. Water Manage. 225, 105758 (2019).
Mahdaviara, M., Sharifi, M., Bakhshian, S. & Shokri, N. Prediction of spontaneous imbibition in porous media using deep and ensemble learning techniques. Fuel 329, 125349 (2022).
Zhou, B. et al. Pressure of different gases injected into large-scale coal matrix: analysis of time–space dependence and prediction using light gradient boosting machine. Fuel 279, 118448 (2020).
Nakhaei-Kohani, R. et al. Extensive data analysis and modelling of carbon dioxide solubility in ionic liquids using chemical structure-based ensemble learning approaches. Fluid. Phase. Equilibria. 585, 114166 (2024).
Mahmoudzadeh, A. et al. Modeling CO2 solubility in water using gradient boosting and light gradient boosting machine. Sci. Rep. 14 (1), 13511 (2024).
Natekin, A. & Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics. 7, 21 (2013).
Rashidi-Khaniabadi, A., Rashidi-Khaniabadi, E., Amiri-Ramsheh, B., Mohammadi, M-R. & Hemmati-Sarapardeh, A. Modeling interfacial tension of surfactant–hydrocarbon systems using robust tree-based machine learning algorithms. Sci. Rep. 13 (1), 10836 (2023).
Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 54, 1937–1967 (2021).
Zhang, J. et al. A unified intelligent model for estimating the (gas + n-alkane) interfacial tension based on the eXtreme gradient boosting (XGBoost) trees. Fuel 282, 118783 (2020).
Mohammadi, M-R. et al. Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state. Sci. Rep. 11 (1), 17911 (2021).
Chen, T., Guestrin, C. & Xgboost A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. :785 – 94. (2016).
Peiro Ahmady Langeroudy, K., Kharazi Esfahani, P. & Khorsand Movaghar, M. R. Enhanced intelligent approach for determination of crude oil viscosity at reservoir conditions. Sci. Rep. 13 (1), 1666 (2023).
Mohammadi, M-R. et al. Application of robust machine learning methods to modeling hydrogen solubility in hydrocarbon fuels. Int. J. Hydrog. Energy. 47 (1), 320–338 (2022).
Markovic, S. et al. Application of XGBoost model for in-situ water saturation determination in Canadian oil-sands by LF-NMR and density data. Sci. Rep. 12 (1), 13984 (2022).
Fahlman, S. & Lebiere, C. The cascade-correlation learning architecture. Adv. Neural. Inf. Process. Syst.2, 524–532 (1989).
Thanh, H. V., Dashtgoli, D. S., Zhang, H. & Min, B. Machine-learning-based prediction of oil recovery factor for experimental CO2-Foam chemical EOR: implications for carbon utilization projects. Energy 278, 127860 (2023).
Amiri-Ramsheh, B., Zabihi, R. & Hemmati-Sarapardeh, A. Modeling wax deposition of crude oils using cascade forward and generalized regression neural networks: application to crude oil production. Geoenergy Sci. Eng. 224, 211613 (2023).
Dong, B., Yang, K., Zhang, W., Yin, J. & Wang, D. An improved method for PWR fuel failure detection using Cascade-forward neural network with decision tree. Front. Energy Res. 10, 851848 (2022).
Zheng, Y. et al. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew. Energy. 153, 1296–1306 (2020).
Zeng, J., Jamei, M., Nait Amar, M., Hasanipanah, M. & Bayat, P. A novel solution for simulating air overpressure resulting from blasting using an efficient cascaded forward neural network. Eng. Comput. 38 (Suppl 3), 2069–2081 (2022).
Specht, D. F. A general regression neural network. IEEE Trans. Neural Networks. 2 (6), 568–576 (1991).
Rooki, R. Application of general regression neural network (GRNN) for indirect measuring pressure loss of Herschel–Bulkley drilling fluids in oil drilling. Measurement 85, 184–191 (2016).
Antanasijević, D., Pocajt, V., Ristić, M. & Perić-Grujić, A. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks. Energy 84, 816–824 (2015).
Cigizoglu, H. K. Generalized regression neural network in monthly flow forecasting. Civil Eng. Environ. Syst. 22 (2), 71–81 (2005).
Naghizadeh, A. et al. Modeling thermal conductivity of hydrogen-based binary gaseous mixtures using generalized regression neural network. Int. J. Hydrog. Energy. 59, 242–250 (2024).
Li, G. et al. Application of general regression neural network to model a novel integrated fluidized bed gasifier. Int. J. Hydrog. Energy. 43 (11), 5512–5521 (2018).
Cigizoglu, H. K. & Alp, M. Generalized regression neural network in modelling river sediment yield. Adv. Eng. Softw. 37 (2), 63–68 (2006).
Hemmati-Sarapardeh, A., Larestani, A., Menad, N. A. & Hajirezaie, S. Applications of Artificial Intelligence Techniques in the Petroleum Industry (Gulf Professional Publishing, 2020).
De Boer, R., Leerlooyer, K., Eigner, M. & Van Bergen, A. Screening of crude oils for asphalt precipitation: theory, practice, and the selection of inhibitors. SPE Prod. Facil. 10 (01), 55–61 (1995).
Burke, N. E., Hobbs, R. E. & Kashou, S. F. Measurement and modeling of asphaltene precipitation (includes associated paper 23831). J. Petrol. Technol. 42 (11), 1440–1446 (1990).
Hemmati-Sarapardeh, A., Aminshahidy, B., Pajouhandeh, A., Yousefi, S. H. & Hosseini-Kaldozakh, S. A. A soft computing approach for the determination of crude oil viscosity: light and intermediate crude oil systems. J. Taiwan Inst. Chem. Eng. 59, 1–10 (2016).
Shateri, M., Ghorbani, S., Hemmati-Sarapardeh, A. & Mohammadi, A. H. Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor. J. Taiwan Inst. Chem. Eng. 50, 131–141 (2015).
Rousseeuw, P. J. & Leroy, A. M. Robust Regression and Outlier Detection (Wiley, 2005).
Farasat, A., Shokrollahi, A., Arabloo, M., Gharagheizi, F. & Mohammadi, A. H. Toward an intelligent approach for determination of saturation pressure of crude oil. Fuel Process. Technol. 115, 201–214 (2013).