Yan, B. et al. Inhibition of soil WindErosion and dust by shelterbelts in the hilly area of loess plateau and its influencing factors. Forests 15, 1413. https://doi.org/10.3390/f15081413 (2024).

Article 

Google Scholar
 

Zare, S., Tavili, A. & Darini, M. J. Effects of different treatments on seed germination and breaking seed dormancy of Prosopis Koelziana and Prosopis juliflora. J. Res. 22, 35–38. https://doi.org/10.1007/s11676-011-0121-8 (2011).

Article 
CAS 

Google Scholar
 

Bhojvaid, P. P. & Timmer, V. R. Soil dynamics in an age sequence of Prosopis juliflora planted for sodic soil restoration in India. Ecol. Manage. 106, 181–193. https://doi.org/10.1016/S0378-1127(97)00310-1 (1998).

Article 

Google Scholar
 

Emtahani, M. & Elmi, M. The ecological studies of Prosopis Koelziana in South of Iran. J. Desert. 1, 1–11 (2006).


Google Scholar
 

Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Parida, A. K. & Das, A. B. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60 (3), 324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Maas, E. V. & Hoffman, G. J. Crop salt tolerance—current assessment. J. Irrig. Drain. Div. 103 (2), 115–134. https://doi.org/10.1061/JRCEE3 (1977).

Article 

Google Scholar
 

Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 57 (5), 1017–1023. https://doi.org/10.1093/jxb/erj108 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New. Phytol. 179, 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Sghayar, S. et al. Seed priming mitigates high salinity impact on germination of bread wheat (Triticum aestivum L.) by improving carbohydrate and protein mobilization. Plant. Direct. 7, e497. https://doi.org/10.1002/pld3.497 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ahmad, F. et al. I. R. Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidants, secondary metabolites and up-regulation of antiporter genes. Plant. Biol. 23, 113–121. https://doi.org/10.1111/plb.13187 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Hassan, M. U. et al. Zinc seed priming alleviates salinity stress and enhances sorghum growth by regulating antioxidant activities, nutrient homeostasis, and osmolyte synthesis. Agronomy 14, 1815. https://doi.org/10.3390/agronomy14081815 (2024).

Article 
CAS 

Google Scholar
 

Karimi, M. R., Sabokdast, M., Beheshti, K., Abbasi, H., Bihamta, M. R. & A. R. & Seed priming with Salicylic acid enhances salt stress tolerance by boosting antioxidant defense in Phaseolus vulgaris genotypes. BMC Plant. Biol. 25, 489. https://doi.org/10.1186/s12870-025-06376-2 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hussain, S., Ahmed, S., Akram, W., Li, G. & Yasin, N. A. Selenium seed priming enhanced the growth of salt-stressed Brassica rapa L. through improving plant nutrition and the antioxidant system. Front. Plant. Sci. 13, 1050359. https://doi.org/10.3389/fpls.2022.1050359 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guragain, R. P. et al. Impact of non-thermal plasma treatment on the seed germination and seedling development of Carrot (Daucus Carota sativus L). J. Phys. Commun. 5, 125011. https://doi.org/10.1088/2399-6528/ac4081 (2021).

Article 
CAS 

Google Scholar
 

Ghaemi, M., Majd, A. & Iranbakhsh, A. Transcriptional responses following seed priming with cold plasma and electromagnetic field in Salvia nemorosa L. J. Theor. Appl. Phys. 14, 323–328. https://doi.org/10.1007/s40094-020-00387-0 (2020).

Article 
ADS 

Google Scholar
 

Ghasemzadeh, N., Iranbakhsh, A., Oraghi-Ardebili, Z., Saadatmand, S. & Jahanbakhsh-Godehkahriz, S. Cold plasma can alleviate cadmium stress by optimizing growth and yield of wheat (Triticum aestivum L.) through changes in physio-biochemical properties and fatty acid profile. Environ. Sci Pollut Res. 29, 35897–35907. https://doi.org/10.1007/s11356-022-18630-3 (2022).

Article 
CAS 

Google Scholar
 

Burducea, I. et al. Helium atmospheric–pressure plasma jet effects on two cultivars of Triticum aestivum L. Foods 12, 208. https://doi.org/10.3390/foods12010208 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Los, A., Ziuzina, D., Boehm, D., Cullen, P. J. & Bourke, P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: effects on seed surface chemistry and characteristics. Plasma Process. Polym. 16 (4), 1800148. https://doi.org/10.1002/ppap.201800148 (2019).

Article 
CAS 

Google Scholar
 

Rasooli, Z., Barzin, G., Mahabadi, T. D. & Entezari, M. Stimulating effects of cold plasma seed priming on germination and seedling growth of Cumin plant. S Afr. J. Bot. 142, 106–113. https://doi.org/10.1016/j.sajb.2021.06.025 (2021).

Article 
CAS 

Google Scholar
 

Šerá, J., Kocourek, P., Čech, J. & Bezdíček, J. Effects of non-thermal plasma on seed germination and plant growth. Plasma Med. 1 (1), 1–12. https://doi.org/10.3390/plants10081616 (2010).

Article 
CAS 

Google Scholar
 

Jiang, J. et al. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci. Technol. 16, 54–58. https://doi.org/10.1088/1009-0630/16/1/12 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Sivachandiran, L. & Khacef, A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv. 7, 1822–1832. https://doi.org/10.1039/C6RA24762H (2017).

Article 
ADS 
CAS 

Google Scholar
 

Ling, L. et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 4, 5859. https://doi.org/10.1038/srep05859 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 89–98. https://doi.org/10.1016/0003-9861(68)90654-1 (1969).

Article 

Google Scholar
 

Fales, F. The assimilation and degradation of carbohydrates by yeast cells. J. Biol. Chem. 193 (1), 113–124. https://doi.org/10.1016/S0021-9258(19)52433-4 (1951).

Article 
CAS 
PubMed 

Google Scholar
 

Bates, L. S., Waldren, R. A. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant. Soil. 39, 205–207. https://doi.org/10.1007/BF00018060 (1973).

Article 
CAS 

Google Scholar
 

Lichtenthaler, H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods in Enzymology. Vol. 148, Academic Press, p. 350– https://doi.org/10.1016/0076-6879(87)48036-1

Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).

Article 
CAS 
PubMed 

Google Scholar
 

Plewa, M. J., Hart, L. M. & Golden, D. E. A method for determining Guaiacol peroxidase activity in plant tissues. Plant. Physiol. 97 (2), 645–649. https://doi.org/10.1104/pp.97.2.645 (1991).

Article 

Google Scholar
 

Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22, 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 (1981).

Article 
CAS 

Google Scholar
 

Dhindsa, R. S., Plumb–Dhindsa, P. & Thorpe, T. A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101. https://doi.org/10.1093/jxb/32.1.93 (1981).

Article 
CAS 

Google Scholar
 

Nicoli, M. C., Elizable, B. E., Piotti, A. & Lerici, C. R. Effect of sugar and Maillard reaction products on polyphenol oxidase and peroxidase activity in food. J. Food Biochem. 15, 169–184. https://doi.org/10.1111/j.1745-4514.1991.tb00153.x (1991).

Article 
CAS 

Google Scholar
 

Campbell, A. R. & Plank, C. S. Measurement of ion concentrations using atomic absorption spectrometry. Anal. Chem. J. 12 (3), 215–219 (1998).


Google Scholar
 

Yang, Z. & Guo, Y. Plant salt response: perception, signaling, and tolerance. Front. Plant. Sci. 9, 1069. https://doi.org/10.3389/fpls.2022.1053699 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hanin, M., Ebel, C., Ngom, M., Laplaze, L. & Masmoudi, K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant. Sci. 7, 1787. https://doi.org/10.3389/fpls.2016.01787 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chantre Nongpiur, R., Singla–Pareek, L., Pareek, A. & S. & Genomics approaches for improving salinity stress tolerance in crop plants. Curr. Genomics. 17, 343–357. https://doi.org/10.2174/1389202917666160331202517 (2016).

Article 
CAS 

Google Scholar
 

Matějovič, M. et al. Hlásná čepková, P. Evaluation of the effect of low–temperature plasma treatment on seed germination of long–term stored genetic resources. Agronomy 14, 1918. https://doi.org/10.3390/agronomy14091918 (2024).

Article 
CAS 

Google Scholar
 

Ďurčányová, S. et al. Efficacy comparison of three atmospheric pressure plasma sources for soybean seed treatment: plasma characteristics, seed properties, germination. Plasma Chem. Plasma Process.. 20, e2400037. https://doi.org/10.1007/s11090-023-10387-y (2023).

Article 
CAS 

Google Scholar
 

Štěpánová, V., Henselová, M., Martinka, M. & Zahoranová, A. Effect of plasma activated water on seed germination and early growth of plants. Plasma Chem. Plasma Process. 38 (5), 969–988. https://doi.org/10.1007/s11090-018-9892-0 (2018).

Article 

Google Scholar
 

Benabderrahim, M. A., Bettaieb, I., Hannachi, H., Rejili, M. & Dufour, T. Cold plasma treatment boosts barley germination and seedling vigor: insights into soluble sugar, starch, and protein modifications. J. Cereal Sci. 116, 103852. https://doi.org/10.1016/j.jcs.2024.103852 (2024).

Article 

Google Scholar
 

Shilpa, B., Priya, P. B., Pallavi, M. & Rao, P. J. M. Effect of cold plasma treatment on seed quality parameters under cold stress in Oryza sativa L. J. Exp. Agric. Int. 46, 943–953. https://doi.org/10.9734/jeai/2024/v46i82781 (2024).

Article 

Google Scholar
 

Bormashenko, E., Grynyov, R., Bormashenko, Y. & Drori, E. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci. Rep. 2, 741. https://doi.org/10.1038/srep00741 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Recek, N. et al. Germination and growth of plasma–treated maize seeds planted in fields and exposed to realistic environmental conditions. Int. J. Mol. Sci. 24, 6868. https://doi.org/10.3390/ijms24076868 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nešković, N. et al. Advancements in plasma agriculture: insights into seed germination, Vigor and stress resilience. Int. J. Mol. Sci. 24, 15093. https://doi.org/10.3390/ijms242015093 (2023).

Article 
CAS 

Google Scholar
 

Kesawat, M. S. et al. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules—current perspectives and future directions. Plants 12 (4), 864. https://doi.org/10.3390/plants12040864 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Raza, A. et al. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 11 (8), 1015. https://doi.org/10.3390/plants8020034 (2022).

Article 
CAS 

Google Scholar
 

Balasubramaniam, T., Shen, G., Esmaeili, N. & Zhang, H. Plants’ response mechanisms to salinity stress. Plants 12, 2253. https://doi.org/10.3390/plants12122253 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Miller, G., Suzuki, N., Ciftci-Yılmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant. Cell. Environ. 33 (4), 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Ahmad, R. et al. Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches. 191–205 (Springer, https://doi.org/10.1007/978-3-030-06118-0_8. (2019).

Poolyarat, N. et al. Germination, physicochemical properties, and antioxidant enzyme activities in Kangkong (Ipomoea aquatica Forssk.) seeds as affected by dielectric barrier discharge plasma. Horticulturae 9 (12), 1269. https://doi.org/10.3390/horticulturae9121269 (2023).

Article 

Google Scholar
 

Acharya, B. R., Gill, S. P., Kaundal, A. & Sandhu, D. Strategies for combating plant salinity stress: the potential of plant growth–promoting microorganisms. Front. Plant. Sci. 15, 1406913. https://doi.org/10.3389/fpls.2024.1406913 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gupta, B. & Huang, B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. 701596 (2014). (2014). https://doi.org/10.1155/2014/701596

Flowers, T. J. & Colmer, T. D. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115 (3), 509–519. https://doi.org/10.1093/aob/mcu267 (2015).

Article 
CAS 

Google Scholar
 

Ghasempour, S., Ghanbari Jahromi, M., Mousavi, A. & Iranbakhsh, A. Seed priming with cold plasma, iron and manganese nanoparticles modulates salinity stress in hemp (Cannabis sativa L.) by improving germination, growth and biochemical attributes. Environ. Sci Pollut Res. Int. 31, 65315–65327. https://doi.org/10.1007/s11356-024-35590-y (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Kavi Kishor, P. B. & Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant. Cell. Environ. 37, 300–311. https://doi.org/10.1111/pce.12157 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Renzetti, M., Funck, D. & Trovato, M. Proline and ROS: a unified mechanism in plant development and stress response? Plants 14, 2. https://doi.org/10.3390/plants14010002 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo, Q. et al. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep. 7, 16680. https://doi.org/10.1038/s41598-017-16944-8 (2017).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mohajer, S., Hajihashemi, S., Amooaghaie, R. & Mirzaee, M. Cold plasma seed treatment improves antioxidant enzyme activity and seedling growth in soybean. BMC Plant. Biol. 24, 208. https://doi.org/10.1186/s12870-024-04961-5 (2024).

Article 
CAS 

Google Scholar
 

Atta, K. et al. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Front. Plant. Sci. 14, 1241736. https://doi.org/10.3389/fpls.2023.1241736 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, Y., Zeng, H., Xu, F., Yan, F. & Xu, W. H⁺–ATPases in plant growth and stress responses. Annu. Rev. Plant. Biol. 73, 495–523. https://doi.org/10.1146/annurev-arplant-102820-114551 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Jiang, L., Zhao, S., Wang, T. & Ma, F. Plasma membrane H⁺–ATPases in plant responses to abiotic stress. J. Genet. Genomics. 49, 289–301. https://doi.org/10.1016/j.jgg.2022.05.007 (2022).

Article 
CAS 

Google Scholar