Guo Q, Zhu X, Beeraka NM, Zhao R, Li S, Li F, et al. Projected epidemiological trends and burden of liver cancer by 2040 based on GBD, C15 Plus, and WHO data. Sci Rep. 2024;14:28131. https://doi.org/10.1038/s41598-024-77658-2.
Dasgupta P, Henshaw C, Youlden DR, Clark PJ, Aitken JF, Baade PD. Global trends in incidence rates of primary adult liver cancers: a systematic review and meta-analysis. Front Oncol. 2020;10:171. https://doi.org/10.3389/fonc.2020.00171.
Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14. https://doi.org/10.1016/s0140-6736(18)30010-2.
Shetty S, Sharma N, Ghosh K. Epidemiology of hepatocellular carcinoma (hcc) in hemophilia. Crit Rev Oncol Hematol. 2016;99:129–33. https://doi.org/10.1016/j.critrevonc.2015.12.009.
Na BK, Pak JH, Hong SJ. Clonorchis sinensis and clonorchiasis. Acta Trop. 2020;203:105309. https://doi.org/10.1016/j.actatropica.2019.105309.
Kim EM, Kwak YS, Yi MH, Kim JY, Sohn WM, Yong TS. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo. PLoS Negl Trop Dis. 2017;11:e0005614. https://doi.org/10.1371/journal.pntd.0005614.
Flores-Guerrero JL. Clonorchis sinensis and carcinogenesis risk: biomarkers and underlying pathways. In: Velázquez-Márquez N, Paredes-Juárez GA, Vallejo-Ruiz V, editors. Pathogens associated with the development of cancer in humans: omics, immunological, and pathophysiological studies. Cham: Springer Nature Switzerland; 2024. p. 257–67.
Wei C, Chen J, Yu Q, Qin Y, Huang T, Liu F, et al. Clonorchis sinensis infection contributes to hepatocellular carcinoma progression via enhancing angiogenesis. PLoS Negl Trop Dis. 2024;18:e0012638. https://doi.org/10.1371/journal.pntd.0012638.
Smout MJ, Lin Q, Tang Z, Qin Y, Deng X, Wei C, et al. Clonorchis sinensis infection amplifies hepatocellular carcinoma stemness, predicting unfavorable prognosis. PLoS Negl Trop Dis. 2024. https://doi.org/10.1371/journal.pntd.0011906.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Liao ZX, Kempson IM, Hsieh CC, Tseng SJ, Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discov Today. 2021;26:2508–14. https://doi.org/10.1016/j.drudis.2021.07.014.
Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF, et al. The lactate receptor gpr81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene. 2020;39:3292–304. https://doi.org/10.1038/s41388-020-1216-5.
Hao Z-N, Tan X-P, Zhang Q, Li J, Xia R, Ma Z. Lactate and lactylation: dual regulators of t-cell-mediated tumor immunity and immunotherapy. Biomolecules. 2024;14:1646.
Liu X, Zhang Y, Li W, Zhou X. Lactylation, an emerging hallmark of metabolic reprogramming: current progress and open challenges. Front Cell Dev Biol. 2022;10:972020. https://doi.org/10.3389/fcell.2022.972020.
Chen H, Li Y, Li H, Chen X, Fu H, Mao D, et al. Nbs1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 2024;631:663–9. https://doi.org/10.1038/s41586-024-07620-9.
Jin Z, Lu Y, Wu X, Pan T, Yu Z, Hou J, et al. The cross-talk between tumor cells and activated fibroblasts mediated by lactate/bdnf/trkb signaling promotes acquired resistance to anlotinib in human gastric cancer. Redox Biol. 2021;46:102076. https://doi.org/10.1016/j.redox.2021.102076.
Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, et al. Kat8-catalyzed lactylation promotes eef1a2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci USA. 2024;121:e2314128121. https://doi.org/10.1073/pnas.2314128121.
Guo XJ, Huang XY, Yang X, Lu JC, Wei CY, Gao C, et al. Loss of 5-hydroxymethylcytosine induces chemotherapy resistance in hepatocellular carcinoma via the 5-hmc/pcaf/akt axis. Cell Death Dis. 2023;14:79. https://doi.org/10.1038/s41419-022-05406-3.
Feng F, Wu J, Chi Q, Wang S, Liu W, Yang L, et al. Lactylome analysis unveils lactylation-dependent mechanisms of stemness remodeling in the liver cancer stem cells. Adv Sci. 2024;11:e2405975. https://doi.org/10.1002/advs.202405975.
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (msigdb) 3.0. Bioinformatics. 2011;27:1739–40. https://doi.org/10.1093/bioinformatics/btr260.
Bush SJ. Read trimming has minimal effect on bacterial snp-calling accuracy. Microbial Genom. 2020;6:mgen000434. https://doi.org/10.1099/mgen.0.000434.
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. Tophat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. https://doi.org/10.1186/gb-2013-14-4-r36.
Liao Y, Smyth GK, Shi W. Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. https://doi.org/10.1093/bioinformatics/btt656.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Xu S, Hu E, Cai Y, Xie Z, Luo X, Zhan L, et al. Using clusterprofiler to characterize multiomics data. Nat Protoc. 2024;19:3292–320. https://doi.org/10.1038/s41596-024-01020-z.
Langmead B. Aligning short sequencing reads with bowtie. Curr Protoc Bioinform. 2010. https://doi.org/10.1002/0471250953.bi1107s32.
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of ngs alignment formats. Bioinformatics. 2015;31:2032–4. https://doi.org/10.1093/bioinformatics/btv098.
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6. https://doi.org/10.1038/nbt.1754.
Wang Q, Li M, Wu T, Zhan L, Li L, Chen M, et al. Exploring epigenomic datasets by chipseeker. Curr Protoc. 2022;2:e585. https://doi.org/10.1002/cpz1.585.
Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. Crossmap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30:1006–7. https://doi.org/10.1093/bioinformatics/btt730.
Zhao W, Zhu L, Gong Q, Ma S, Xiong H, Su T, et al. Unidirectional alteration of methylation and hydroxymethylation at the promoters and differential gene expression in oral squamous cell carcinoma. Front Genet. 2023;14:1269084. https://doi.org/10.3389/fgene.2023.1269084.
Nunn A, Otto C, Stadler PF, Langenberger D. Comprehensive benchmarking of software for mapping whole genome bisulfite data: From read alignment to DNA methylation analysis. Brief Bioinform. 2022;2:e585. https://doi.org/10.1093/bib/bbab021.
Claps G, Faouzi S, Quidville V, Chehade F, Shen S, Vagner S, et al. The multiple roles of ldh in cancer. Nat Rev Clin Oncol. 2022;19:749–62. https://doi.org/10.1038/s41571-022-00686-2.
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol. 2022;83:452–71. https://doi.org/10.1016/j.semcancer.2020.07.015.
Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 2021;21:151–61. https://doi.org/10.1038/s41577-020-0406-2.
Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, et al. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating pd-l1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer. 2022;2:e585. https://doi.org/10.1136/jitc-2020-002305.
Eun JW, Yoon JH, Ahn HR, Kim S, Kim YB, Lim SB, et al. Cancer-associated fibroblast-derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to sorafenib and lenvatinib. Cancer Commun. 2023;43:455–79. https://doi.org/10.1002/cac2.12414.
Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, et al. Identification of a tumour immune barrier in the hcc microenvironment that determines the efficacy of immunotherapy. J Hepatol. 2023;78:770–82. https://doi.org/10.1016/j.jhep.2023.01.011.
Tong W, Wang T, Bai Y, Yang X, Han P, Zhu L, et al. Spatial transcriptomics reveals tumor-derived spp1 induces fibroblast chemotaxis and activation in the hepatocellular carcinoma microenvironment. J Transl Med. 2024;22:840. https://doi.org/10.1186/s12967-024-05613-w.
Wangensteen KJ, Zhang S, Greenbaum LE, Kaestner KH. A genetic screen reveals foxa3 and tnfr1 as key regulators of liver repopulation. Genes Dev. 2015;29:904–9. https://doi.org/10.1101/gad.258855.115.
Wang L, Li B, Bo X, Yi X, Xiao X, Zheng Q. Hypoxia-induced lncrna dact3-as1 upregulates pkm2 to promote metastasis in hepatocellular carcinoma through the hdac2/foxa3 pathway. Exp Mol Med. 2022;54:848–60. https://doi.org/10.1038/s12276-022-00767-3.
Chen Y, Peng C, Chen J, Chen D, Yang B, He B, et al. Wtap facilitates progression of hepatocellular carcinoma via m6a-hur-dependent epigenetic silencing of ets1. Mol Cancer. 2019;18:127. https://doi.org/10.1186/s12943-019-1053-8.
Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, et al. Epigenetic regulation of ferroptosis via ets1/mir-23a-3p/acsl4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41:3. https://doi.org/10.1186/s13046-021-02208-x.
Ozaki I, Mizuta T, Zhao G, Yotsumoto H, Hara T, Kajihara S, et al. Involvement of the ets-1 gene in overexpression of matrilysin in human hepatocellular carcinoma. Cancer Res. 2000;60:6519–25.
Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 2019;20:207–20. https://doi.org/10.1038/s41576-018-0089-8.
Izzo LT, Wellen KE. Histone lactylation links metabolism and gene regulation. Nature. 2019;574:492–3. https://doi.org/10.1038/d41586-019-03122-1.
Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)a reader protein ythdf2 expression in ocular melanoma. Genome Biol. 2021;22:85. https://doi.org/10.1186/s13059-021-02308-z.
Jeon AJ, Anene-Nzelu CG, Teo YY, Chong SL, Sekar K, Wu L, et al. A genomic enhancer signature associates with hepatocellular carcinoma prognosis. JHEP Rep: Innov Hepatol. 2023;5:100715. https://doi.org/10.1016/j.jhepr.2023.100715.
Hu S, Song A, Peng L, Tang N, Qiao Z, Wang Z, et al. H3k4me2/3 modulate the stability of rna polymerase ii pausing. Cell Res. 2023;33:403–6. https://doi.org/10.1038/s41422-023-00794-3.
Ji H, Zhou Y, Zhuang X, Zhu Y, Wu Z, Lu Y, et al. Hdac3 deficiency promotes liver cancer through a defect in h3k9ac/h3k9me3 transition. Cancer Res. 2019;79:3676–88. https://doi.org/10.1158/0008-5472.Can-18-3767.
Sur I, Taipale J. The role of enhancers in cancer. Nat Rev Cancer. 2016;16:483–93. https://doi.org/10.1038/nrc.2016.62.
Lidschreiber K, Jung LA, von der Emde H, Dave K, Taipale J, Cramer P, et al. Transcriptionally active enhancers in human cancer cells. Mol Syst Biol. 2021;17:e9873. https://doi.org/10.15252/msb.20209873.
Ren X, Wu Y, Song T, Yang Q, Zhou Q, Lin J, et al. Clonorchis sinensis promotes intrahepatic cholangiocarcinoma progression by activating fasn-mediated fatty acid metabolism. J Gastroenterol Hepatol. 2025;40:1004–15. https://doi.org/10.1111/jgh.16879.
Xu L, Zhang Y, Lin Z, Deng X, Ren X, Huang M, et al. Fasn-mediated fatty acid biosynthesis remodels immune environment in clonorchis sinensis infection-related intrahepatic cholangiocarcinoma. J Hepatol. 2024;81:265–77. https://doi.org/10.1016/j.jhep.2024.03.016.
Xu Y, Hao X, Ren Y, Xu Q, Liu X, Song S, et al. Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma. Front Oncol. 2022;12:1063423. https://doi.org/10.3389/fonc.2022.1063423.
Chen W, Guo L, Xu H, Dai Y, Yao J, Wang L. Nac1 transcriptional activation of ldha induces hepatitis b virus immune evasion leading to cirrhosis and hepatocellular carcinoma development. Oncogenesis. 2024;13:15. https://doi.org/10.1038/s41389-024-00515-4.
Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of hepatitis b virus-related hepatocellular carcinoma. Infect Agent Cancer. 2024;19:31. https://doi.org/10.1186/s13027-024-00593-4.
Wang H, Zhang Y, Du S. Integrated analysis of lactate-related genes identifies polrmt as a novel marker promoting the proliferation, migration and energy metabolism of hepatocellular carcinoma via wnt/β-catenin signaling. Am J Cancer Res. 2024;14:1316–37. https://doi.org/10.62347/zttg4319.
Dematei A, Fernandes R, Soares R, Alves H, Richter J, Botelho MC. Angiogenesis in schistosoma haematobium-associated urinary bladder cancer. APMIS. 2017;125:1056–62. https://doi.org/10.1111/apm.12756.
Nesi G, Nobili S, Cai T, Caini S, Santi R. Chronic inflammation in urothelial bladder cancer. Virchows Arch. 2015;467:623–33. https://doi.org/10.1007/s00428-015-1820-x.
Rambau PF, Chalya PL, Jackson K. Schistosomiasis and urinary bladder cancer in north western tanzania: a retrospective review of 185 patients. Infect Agent Cancer. 2013;8:19. https://doi.org/10.1186/1750-9378-8-19.
Weintraub M, Khaled H, Zekri A, Bahnasi A, Eissa S, Venzon D, et al. P53 mutations in egyptian bladder-cancer. Int J Oncol. 1995;7:1269–74. https://doi.org/10.3892/ijo.7.6.1269.
Vale N, Gouveia MJ, Rinaldi G, Santos J, Santos LL, Brindley PJ, et al. The role of estradiol metabolism in urogenital schistosomiasis-induced bladder cancer. Tumour Biol. 2017;39:1010428317692247. https://doi.org/10.1177/1010428317692247.
Mohammed SA, Hetta HF, Zahran AM, Tolba MEM, Attia RAH, Behnsawy HM, et al. T cell subsets, regulatory t, regulatory b cells and proinflammatory cytokine profile in schistosoma haematobium associated bladder cancer: first report from upper egypt. PLoS Negl Trop Dis. 2023;17:e0011258. https://doi.org/10.1371/journal.pntd.0011258.
Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, et al. Aerobic glycolysis enhances hbx-initiated hepatocellular carcinogenesis via nf-κbp65/hk2 signalling. J Exp Clin Cancer Res. 2022;41:329. https://doi.org/10.1186/s13046-022-02531-x.
Gerresheim GK, Roeb E, Michel AM, Niepmann M. Hepatitis c virus downregulates core subunits of oxidative phosphorylation, reminiscent of the warburg effect in cancer cells. Cells. 2019;8:1410. https://doi.org/10.3390/cells8111410.