Marks, M., West, T. N., Bagatto, B. & Moore, F. B. G. Developmental environment alters conditional aggression in zebrafish. Copeia 4, 901–908. https://doi.org/10.1643/0045-8511(2005)005[0901:DEACAI]2.0.CO;2 (2005).

Article 

Google Scholar
 

Tamilselvan, P. & Sloman, K. A. Developmental social experience of parents affects behaviour of offspring in zebrafish. Anim. Behav. 133, 153–160. https://doi.org/10.1016/j.anbehav.2017.09.009 (2017).

Article 

Google Scholar
 

Zajitschek, S., Herbert-Read, J. E., Abbasi, N. M., Zajitschek, F. & Immler, S. Paternal personality and social status influence offspring activity in zebrafish. BMC Evol. Biol. 17, 157. https://doi.org/10.1186/s12862-017-1005-0 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shams, S., Amlani, S., Buske, C., Chatterjee, D. & Gerlai, R. Developmental Social Isolation affects adult social behavior, social interaction, and dopamine metabolites in zebrafish. Dev. Psychobiol. 60(1), 43–56. https://doi.org/10.1002/dev.21581 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Green, M. R. & Swaney, W. T. Interacting effects of environmental enrichment across multiple generations on early life phenotypes in zebrafish. Front. Cell Dev. Biol. 9, 657591. https://doi.org/10.3389/fcell.2021.657591 (2021).

Article 

Google Scholar
 

Jonsson, B. & Jonsson, N. Early environment influences later performance in fishes. J. Fish Biol. 85, 151–188. https://doi.org/10.1111/jfb.12432 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Groneberg, A. H. et al. Early-life social experience shapes social avoidance reactions in larval zebrafish. Curr. Biol. 30, 4009–4021. https://doi.org/10.1016/j.cub.2020.07.088 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Prentice, P. M., Alcalde, M. C., Císař, P. & Planella, S. R. Early-life environmental enrichment promotes positive animal welfare for juvenile Atlantic salmon (Salmo salar) in aquaculture research. Sci Rep. 15, 5828. https://doi.org/10.1038/s41598-025-88780-0 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eachus, H., Choi, M. K. & Ryu, S. The effects of early life stress on the brain and behaviour: Insights from zebrafish models. Front. Cell Dev. Biol. 9, 657591. https://doi.org/10.3389/fcell.2021.657591 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fontana, B. D., Gibbon, A. J., Cleal, M., Norton, W. H. J. & Parker, M. O. Chronic unpredictable early-life stress (CUELS) protocol: Early-life stress changes anxiety levels of adult zebrafish. Prog. Neuro-Psychoph. 108, 110087. https://doi.org/10.1016/j.pnpbp.2020.110087 (2021).

Article 
CAS 

Google Scholar
 

Zhang, Z. et al. Physical enrichment for improving welfare in fish aquaculture and fitness of stocking fish: A review of fundamentals, mechanisms and applications. Aquaculture 574(15), 739651. https://doi.org/10.1016/j.aquaculture.2023.739651 (2023).

Article 

Google Scholar
 

Parker, M. O., Millington, M. E., Combe, F. J. & Brennan, C. H. Housing conditions differentially affect physiological and behavioural stress responses of zebrafish, as well as the response to anxiolytics. PLoS ONE 7(4), e34992. https://doi.org/10.1371/journal.pone.0034992 (2012).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Otsuka, A., Inahata, M., Shimomura, Y. & Kagawa, N. Physiological changes in response to social isolation in male medaka fish. Fish. Sci. 86, 775–781. https://doi.org/10.1007/s12562-020-01441-1 (2020).

Article 
CAS 

Google Scholar
 

Hesse, S. & Thünken, T. Growth and social behavior in a cichlid fish are affected by social rearing environment and kinship. Sci. Nat. 101(4), 273–283. https://doi.org/10.1007/s00114-014-1154-6 (2014).

Article 
CAS 

Google Scholar
 

Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. R. Soc. B. 284, 1861. https://doi.org/10.1098/rspb.2017.1126 (2017).

Article 

Google Scholar
 

Moretz, J. A., Martins, E. P. & Robison, B. D. The effects of early and adult social environment on zebrafish (Danio rerio) behavior. Environ. Biol. Fish 80, 91–101. https://doi.org/10.1007/s10641-006-9122-4 (2007).

Article 

Google Scholar
 

Herczeg, G., Gonda, A. & Merilä, J. The social cost of shoaling covaries with predation risk in nine-spined stickleback, Pungitius pungitius, populations. Anim. Behav. 77(3), 575–580. https://doi.org/10.1016/j.anbehav.2008.10.023 (2009).

Article 

Google Scholar
 

Giacomini, A. C. V. V. et al. My stress, our stress: Blunted cortisol response to stress in isolated housed zebrafish. Physiol. Behav. 139, 182–187. https://doi.org/10.1016/j.physbeh.2014.11.035 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Forsatkar, M. N., Safari, O. & Boiti, C. Effects of social isolation on growth, stress response, and immunity of zebrafish. Acta. Ethol. 20, 255–261. https://doi.org/10.1007/s10211-017-0270-7 (2017).

Article 

Google Scholar
 

Shams, S., Khan, A. & Gerlai, R. Early social deprivation does not affect cortisol response to acute and chronic stress in zebrafish. Stress 24, 273–281. https://doi.org/10.1080/10253890.2020.1807511 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Onarheim, T., Janczak, A. M. & Nordgreen, J. The effects of social vs. individual housing of zebrafish on whole-body cortisol and behavior in two tests of anxiety. Front. Vet. Sci. 9, 859848. https://doi.org/10.3389/fvets.2022.859848 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shams, S., Chatterjee, D. & Gerlai, R. Chronic social isolation affects thigmotaxis and whole-brain serotonin levels in adult zebrafish. Behav. Brain Res. 292, 283–287. https://doi.org/10.1016/j.bbr.2015.05.061 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Jeffrey, J. D. & Gilmour, K. M. Programming of the hypothalamic-pituitary–interrenal axis by maternal social status in zebrafish (Danio rerio). J. Exp. Biol. 219(11), 1734–1743. https://doi.org/10.1242/jeb.138826 (2016).

Article 
PubMed 

Google Scholar
 

Oswald, M. & Robison, B. D. Strain-specific alteration of zebrafish feeding behavior in response to aversive stimuli. Can. J. Zool. 86(10), 1085–1094. https://doi.org/10.1139/Z08-085 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fowler, L. A., Williams, M. B., D’Abramo, L. R. & Watts, S. A. Zebrafish nutrition: Moving forward. Zebrafish Biomed Res 33, 379–401. https://doi.org/10.1016/B978-0-12-812431-4.00033-6 (2020).

Article 

Google Scholar
 

Eriegha, O. J. & Ekokotu, P. A. Factors affecting feed intake in cultured fish species: a review. Anim. Res. Int. 14(2), 2697–2709 (2017).


Google Scholar
 

Brugman, S. The zebrafish as a model to study intestinal inflammation. Dev. Comp. Immunol. 64, 82–92. https://doi.org/10.1016/j.dci.2016.02.020 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Silverstein, J. T., Bosworth, B. G., Waldbieser, G. C. & Wolters, W. R. Feed intake in channel catfish: Is there a genetic component?. Aquac. Res. 32, 199–205. https://doi.org/10.1046/j.1355-557x.2001.00015.x (2001).

Article 

Google Scholar
 

Besson, M. et al. Feed intake with genomic data to improve feed efficiency in sea bass. Front. Genet 10, 219. https://doi.org/10.3389/fgene.2019.00219 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

de Verdal, H., Vandeputte, M., Mekkawy, W., Chatain, B. & Benzie, J. A. H. Quantifying the genetic parameters of feed efficiency in juvenile Nile tilapia Oreochromis niloticus. BMC Genet. https://doi.org/10.1186/s12863-018-0691-y (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thodesen, J., Gjerde, B., Grisdale-Helland, B. & Storebakken, T. Genetic variation in feed intake, growth and feed utilization in Atlantic salmon (Salmo salar). Aquaculture 194(3–4), 273–281. https://doi.org/10.1016/S0044-8486(00)00527-5 (2001).

Article 

Google Scholar
 

Park, H. et al. Towards the development of a sustainable soya bean-based feedstock for aquaculture. Plant Biotechnol. J. 15, 227–236. https://doi.org/10.1111/pbi.12608 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Lin, S. & Luo, L. Effects of different levels of soybean meal inclusion in replacement for fish meal on growth, digestive enzymes and transaminase activities in practical diets for juvenile tilapia, Oreochromis niloticus × O. aureus. AFST 168(1–2), 80–87. https://doi.org/10.1016/j.anifeedsci.2011.03.012 (2011).

Article 
CAS 

Google Scholar
 

Zhou, Q. C., Mai, K. S., Tan, B. P. & Liu, Y. J. Partial replacement of fishmeal by soybean meal in diets for juvenile cobia (Rachycentron canadum). Aquac. Nutr. 11(3), 17–182. https://doi.org/10.1111/j.1365-2095.2005.00335.x (2005).

Article 

Google Scholar
 

Macusi, E. D. et al. Protein fishmeal replacement in aquaculture: A systematic review and implications on growth and adoption viability. Sustainability 15(16), 12500. https://doi.org/10.3390/su151612500 (2023).

Article 
CAS 

Google Scholar
 

Blaufuss, P. & Trushenski, J. Exploring soy-derived alternatives to fish meal: Using soy protein concentrate and soy protein isolate in hybrid striped bass feeds. N. Am. J. Aquac. 74(1), 9–19. https://doi.org/10.1080/15222055.2011.635782 (2012).

Article 

Google Scholar
 

Hua, K. et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 1(3), 316–329. https://doi.org/10.1016/j.oneear.2019.10.018 (2019).

Article 
ADS 

Google Scholar
 

Francis, G., Makkar, H. P. S. & Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197–227. https://doi.org/10.1016/S0044-8486(01)00526-9 (2001).

Article 
CAS 

Google Scholar
 

Krogdahl, Å., Bakke-McKellep, A. M. & Baeverfjord, G. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac. Nutr. 9, 361–371. https://doi.org/10.1046/j.1365-2095.2003.00264.x (2003).

Article 

Google Scholar
 

Kwasek, K. et al. Does exposure of broodstock to dietary soybean meal affect its utilization in the offspring of zebrafish (Danio rerio)?. Animals 12(12), 1475. https://doi.org/10.3390/ani12121475 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

de Verdal, H. et al. Improving feed efficiency in fish using selective breeding: A review. Rev. Aquacult. 10, 833–851. https://doi.org/10.1111/raq.12202 (2018).

Article 

Google Scholar
 

Izquierdo, M. S., Fernández-Palacios, H. & Tacon, A. G. J. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197, 25–42. https://doi.org/10.1016/S0044-8486(01)00581-6 (2001).

Article 

Google Scholar
 

Markovich, M. L., Rizzuto, N. V. & Brown, P. B. Diet affects spawning in zebrafish. Zebrafish 4(1), 69–74. https://doi.org/10.1089/zeb.2006.9993 (2007).

Article 
PubMed 

Google Scholar
 

Newman, T., Jhinku, N., Meier, M. & Horsfield, J. Dietary intake influences adult fertility and offspring fitness in zebrafish. PLoS ONE 11(11), e0166394. https://doi.org/10.1371/journal.pone.0166394 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Muchlisin, Z. A. A general overview on some aspects of fish reproduction. Aceh Int. J. Sci. Technol. 3(1), 43–52. https://doi.org/10.13170/AIJST.0301.05 (2014).

Article 

Google Scholar
 

Volkoff, H. & London, S. Nutrition and reproduction in fish. Encycl Reprod 6, 743–748. https://doi.org/10.1016/B978-0-12-809633-8.20624-9 (2018).

Article 

Google Scholar
 

Dissinger, A., Rimoldi, S., Terova, G. & Kwasek, K. Chronic social isolation affects feeding behavior of juvenile zebrafish (Danio rerio). PLoS ONE 19(7), e0307967. https://doi.org/10.1371/journal.pone.0307967 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Horwood, J. W., Greer Walker, M. & Witthames, P. The effect of feeding levels on the fecundity of plaice (Pleuronectes platessa). J. Mar. Biol. Assoc 69(1), 81–92. https://doi.org/10.1017/s0025315400049122 (1989).

Article 

Google Scholar
 

Higuchi, K. et al. Effect of long-term food restriction on reproductive performances in female yellowtail Seriola quinqueradiata. Aquaculture 486(3), 223–231. https://doi.org/10.1016/j.aquaculture.2017.12.032 (2018).

Article 

Google Scholar
 

McCormick, M. I. Mothers matter: Crowding leads to stressed mothers and smaller offspring in marine fish. Ecology 87(5), 1104–1109. https://doi.org/10.1890/0012-9658(2006)87[1104:mmclts]2.0.co;2 (2006).

Article 
PubMed 

Google Scholar
 

Abdollahpour, H., Falahatkar, B., Jafari, N. & Lawrence, C. Effect of stress severity on zebrafish (Danio rerio) growth, gonadal development and reproductive performance: Do females and males respond differently?. Aquaculture 522, 735099. https://doi.org/10.1016/j.aquaculture.2020.735099 (2020).

Article 
CAS 

Google Scholar
 

Lovell, R. T. Nutrition and feeding of fish (Van Nostrand Reinhold, New York, 1989).


Google Scholar
 

Jobling, M. Growth studies with fish: Overcoming the problems of size variation. J. Fish Biol. 22, 153–157. https://doi.org/10.1111/j.1095-8649.1983.tb02946.x (1983).

Article 

Google Scholar
 

Halver, J. E. & Hardy, R. W. Fish nutrition 3rd edn. (Academic Press, Cambridge, 2002).


Google Scholar
 

Uusi-Heikillä, S., Wolter, C., Meinelt, T. & Arlinghaus, R. Size-dependent reproductive success of wild zebrafish Danio rerio in the laboratory. J. Fish Biol. 77, 552–569. https://doi.org/10.1111/j.1095-8649.2010.02698.x (2010).

Article 

Google Scholar
 

Breck, J. E. Body composition in fishes: Body size matters. Aquaculture 433, 40–49. https://doi.org/10.1016/j.aquaculture.2014.05.049 (2014).

Article 

Google Scholar
 

Ferosekhan, S. et al. Maternal size on reproductive performance, egg and larval quality in the endangered Asian catfish. Clarias magur. Aquac. Res. 52(11), 5168–5179. https://doi.org/10.1111/are.15385 (2021).

Article 

Google Scholar
 

Amaral, I. P. G. & Johnston, I. A. Experimental selection for body size at age modifies early life-history traits and muscle gene expression in adult zebrafish. J. Exp. Biol. 215(22), 3895–2904. https://doi.org/10.1242/jeb.068908 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Meirelles, M. G. et al. Growth hormone overexpression induces hyperphagia and intestinal morphophysiological adaptations to improve nutrient uptake in zebrafish. Front. Physiol. 12, 723853. https://doi.org/10.3389/fphys.2021.723853 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bertucci, J. I. et al. Nutrient regulation of endocrine factors influencing feeding and growth in fish. Front. Endocrinol. 10, 83. https://doi.org/10.3389/fendo.2019.00083 (2019).

Article 

Google Scholar
 

Mennigen, J. A. et al. Social status-dependent regulation and function of the somatotropic axis in juvenile rainbow trout. Mol. Cell. Endocrinol. 554, 111709. https://doi.org/10.1016/j.mce.2022.111709 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Tian, J. T., Mai, K. & Liu, C. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). Fish Physiol. Biochem. 41, 773–787. https://doi.org/10.1007/s10695-015-0045-x (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Izquierdo, M. S. et al. Nutritional programming through broodstock diets to improve utilization of very low fishmeal and fish oil diets in gilthead sea bream. Aquaculture 449, 18–26. https://doi.org/10.1016/j.aquaculture.2015.03.032 (2015).

Article 
CAS 

Google Scholar
 

Kwasek, K. et al. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PLoS ONE 15(3), 1–19. https://doi.org/10.1371/journal.pone.0225917 (2020).

Article 
CAS 

Google Scholar
 

Geurden, I. et al. The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS ONE 8(12), e83162. https://doi.org/10.1371/journal.pone.0083162 (2013).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Clarkson, M. et al. Early nutritional intervention can improve utilisation of vegetable-based diets in diploid and triploid Atlantic salmon (Salmo salar L.). Br. J. Nutr. 118(1), 17–29. https://doi.org/10.1017/S0007114517001842 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kemski, M., Wick, M. & Dabrowski, K. Nutritional programming effects on growth and reproduction of broodstock and embryonic development of progeny in yellow perch (Perca flavescens) fed soybean meal-based diets. Aquaculture 497, 452–461. https://doi.org/10.1016/j.aquaculture.2018.07.001 (2018).

Article 

Google Scholar
 

Kumar, S. et al. Does nutritional history impact on future performance and utilization of plant based diet in common carp?. Aquaculture 551, 737935. https://doi.org/10.1016/j.aquaculture.2022.737935 (2022).

Article 
CAS 

Google Scholar
 

Mania, M. et al. Expression and distribution of leptin and its receptors in the digestive tract of DIO (diet-induced obese) zebrafish. Anzeiger 212, 37–47. https://doi.org/10.1016/j.aanat.2017.03.005 (2017).

Article 
CAS 

Google Scholar
 

Volkoff, H. et al. Neuropeptides and the control of food intake in fish. Gen. Comp. Endocrinol. 142, 3–19. https://doi.org/10.1016/j.ygcen.2004.11.001 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901. https://doi.org/10.1038/29795 (1998).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Audira, G. et al. Zebrafish mutants carrying leptin a (lepa) gene deficiency display obesity, anxiety, less aggression and fear, circadian rhythm and color preference dysregulation. Int. J. Mol. Sci. 19(12), 4038. https://doi.org/10.3390/ijms19124038 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Szyf, M., McGowan, P. & Meaney, M. J. The social environment and the epigenome. Environ. Mol. Mutagen. 49(1), 46–60. https://doi.org/10.1002/em.20357 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Gavery, M. R. & Roberts, S. B. Epigenetic considerations in aquaculture. PeerJ 5, e4147. https://doi.org/10.7717/peerj.4147 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Soengas, J. L., Cerdá-Reverter, J. M. & Delgado, M. J. Central regulation of food intake in fish: An evolutionary perspective. J. Mol. Endocrinol. 60(4), R171–R199. https://doi.org/10.1530/JME-17-0320 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Perera, E. & Yúfera, M. Soybean meal and soy protein concentrate in early diet elicit different nutritional programming effects on juvenile zebrafish. Zebrafish 13(1), 61–69. https://doi.org/10.1089/zeb.2015.1131 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Carnovali, M., Valli, R., Banfi, G., Porta, G. & Mariotti, M. Soybean meal-dependent intestinal inflammation induces different patterns of bone-loss in adult zebrafish scale. Biomedicines 9(4), 393. https://doi.org/10.3390/biomedicines9040393 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fuentes-Appelgren, P. et al. Effect of the dietary inclusion of soybean components on the innate immune system in zebrafish. Zebrafish 14(1), 41–49. https://doi.org/10.1089/zeb.2013.0934 (2014).

Article 
CAS 

Google Scholar
 

Hedrera, M. I. et al. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS ONE 8(7), e69983. https://doi.org/10.1371/journal.pone.0069983 (2013).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fehrman-Cartes, K. et al. Anti-inflammatory effects of aloe vera on soy meal-induced intestinal inflammation in zebrafish. Fish Shellfish Immun. 95, 564. https://doi.org/10.1016/j.fsi.2019.10.075 (2019).

Article 
CAS 

Google Scholar
 

Micheloni, G. et al. Soy diet induces intestinal inflammation in adult zebrafish: Role of OTX and P53 family. Exp. Pathol-Jena. 103(1), 13–22. https://doi.org/10.1111/iep.12420 (2021).

Article 
CAS 

Google Scholar
 

Molinari, G. S. et al. Can intestinal absorption of dietary protein be improved through early exposure to plant-based diet?. PLoS ONE 15(6), e0228758. https://doi.org/10.1371/journal.pone.0228758 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dhanasiri, A. et al. Dietary inclusion of plant ingredients induces epigenetic changes in the intestine of zebrafish. Epigenetics 15(10), 1035–1051. https://doi.org/10.1080/15592294.2020.1747777 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Volkoff, H. & Peter, R. E. Feeding behavior of fish and its control. Zebrafish 3(2), 131–140. https://doi.org/10.1089/zeb.2006.3.131 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Jobling, M. National research council (NRC): Nutrient requirements of fish and shrimp. Aquacult. Int. 20, 601–602. https://doi.org/10.1007/s10499-011-9480-6 (2012).

Article 

Google Scholar
 

Fernandes, H., Coronado, M., Hernández, A. J., Allende, M. L. & Feijoo, C. G. Dietary protein requirement during juvenile growth of zebrafish (Danio rerio). Zebrafish 13(6), 548–555. https://doi.org/10.1089/zeb.2016.1303 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Patula, S. et al. Nutritional programming with dietary soybean meal and its effect on gut microbiota in zebrafish (Danio rerio). Zebrafish 18(2), 125–138. https://doi.org/10.1089/zeb.2020.1952 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Haahr, M. RANDOM.ORG: True random number service. Retrieved from https://www.random.org (2025).

Wallace, C. K. et al. Effectiveness of rapid cooling as a method of euthanasia for young zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 57(1), 58–63 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Stockhammer, O. W., Zakrzewska, A., Hegedûs, Z., Spaink, H. P. & Meijer, A. H. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J. Immunol. 182(9), 5641–5643. https://doi.org/10.4049/jimmunol.0900082 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Galindo-Villegas, J., García-Moreno, D., de Oliveira, S., Meseguer, J. & Mulero, V. Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish development. PNAS 109(39), E2605–E2614. https://doi.org/10.1073/pnas.1209920109 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yossa, R., Sarker, P. K., Karanth, S., Ekker, M. & Vandenberg, G. W. Effects of dietary biotin and avidin on growth, survival, feed conversion, biotin status and gene expression of zebrafish Danio rerio. Comp. Biochem. Phys. B. 160(4), 150–158. https://doi.org/10.1016/j.cbpb.2011.07.005 (2011).

Article 
CAS 

Google Scholar