Marks, M., West, T. N., Bagatto, B. & Moore, F. B. G. Developmental environment alters conditional aggression in zebrafish. Copeia 4, 901–908. https://doi.org/10.1643/0045-8511(2005)005[0901:DEACAI]2.0.CO;2 (2005).
Tamilselvan, P. & Sloman, K. A. Developmental social experience of parents affects behaviour of offspring in zebrafish. Anim. Behav. 133, 153–160. https://doi.org/10.1016/j.anbehav.2017.09.009 (2017).
Zajitschek, S., Herbert-Read, J. E., Abbasi, N. M., Zajitschek, F. & Immler, S. Paternal personality and social status influence offspring activity in zebrafish. BMC Evol. Biol. 17, 157. https://doi.org/10.1186/s12862-017-1005-0 (2017).
Shams, S., Amlani, S., Buske, C., Chatterjee, D. & Gerlai, R. Developmental Social Isolation affects adult social behavior, social interaction, and dopamine metabolites in zebrafish. Dev. Psychobiol. 60(1), 43–56. https://doi.org/10.1002/dev.21581 (2018).
Green, M. R. & Swaney, W. T. Interacting effects of environmental enrichment across multiple generations on early life phenotypes in zebrafish. Front. Cell Dev. Biol. 9, 657591. https://doi.org/10.3389/fcell.2021.657591 (2021).
Jonsson, B. & Jonsson, N. Early environment influences later performance in fishes. J. Fish Biol. 85, 151–188. https://doi.org/10.1111/jfb.12432 (2014).
Groneberg, A. H. et al. Early-life social experience shapes social avoidance reactions in larval zebrafish. Curr. Biol. 30, 4009–4021. https://doi.org/10.1016/j.cub.2020.07.088 (2020).
Prentice, P. M., Alcalde, M. C., Císař, P. & Planella, S. R. Early-life environmental enrichment promotes positive animal welfare for juvenile Atlantic salmon (Salmo salar) in aquaculture research. Sci Rep. 15, 5828. https://doi.org/10.1038/s41598-025-88780-0 (2025).
Eachus, H., Choi, M. K. & Ryu, S. The effects of early life stress on the brain and behaviour: Insights from zebrafish models. Front. Cell Dev. Biol. 9, 657591. https://doi.org/10.3389/fcell.2021.657591 (2021).
Fontana, B. D., Gibbon, A. J., Cleal, M., Norton, W. H. J. & Parker, M. O. Chronic unpredictable early-life stress (CUELS) protocol: Early-life stress changes anxiety levels of adult zebrafish. Prog. Neuro-Psychoph. 108, 110087. https://doi.org/10.1016/j.pnpbp.2020.110087 (2021).
Zhang, Z. et al. Physical enrichment for improving welfare in fish aquaculture and fitness of stocking fish: A review of fundamentals, mechanisms and applications. Aquaculture 574(15), 739651. https://doi.org/10.1016/j.aquaculture.2023.739651 (2023).
Parker, M. O., Millington, M. E., Combe, F. J. & Brennan, C. H. Housing conditions differentially affect physiological and behavioural stress responses of zebrafish, as well as the response to anxiolytics. PLoS ONE 7(4), e34992. https://doi.org/10.1371/journal.pone.0034992 (2012).
Otsuka, A., Inahata, M., Shimomura, Y. & Kagawa, N. Physiological changes in response to social isolation in male medaka fish. Fish. Sci. 86, 775–781. https://doi.org/10.1007/s12562-020-01441-1 (2020).
Hesse, S. & Thünken, T. Growth and social behavior in a cichlid fish are affected by social rearing environment and kinship. Sci. Nat. 101(4), 273–283. https://doi.org/10.1007/s00114-014-1154-6 (2014).
Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. R. Soc. B. 284, 1861. https://doi.org/10.1098/rspb.2017.1126 (2017).
Moretz, J. A., Martins, E. P. & Robison, B. D. The effects of early and adult social environment on zebrafish (Danio rerio) behavior. Environ. Biol. Fish 80, 91–101. https://doi.org/10.1007/s10641-006-9122-4 (2007).
Herczeg, G., Gonda, A. & Merilä, J. The social cost of shoaling covaries with predation risk in nine-spined stickleback, Pungitius pungitius, populations. Anim. Behav. 77(3), 575–580. https://doi.org/10.1016/j.anbehav.2008.10.023 (2009).
Giacomini, A. C. V. V. et al. My stress, our stress: Blunted cortisol response to stress in isolated housed zebrafish. Physiol. Behav. 139, 182–187. https://doi.org/10.1016/j.physbeh.2014.11.035 (2015).
Forsatkar, M. N., Safari, O. & Boiti, C. Effects of social isolation on growth, stress response, and immunity of zebrafish. Acta. Ethol. 20, 255–261. https://doi.org/10.1007/s10211-017-0270-7 (2017).
Shams, S., Khan, A. & Gerlai, R. Early social deprivation does not affect cortisol response to acute and chronic stress in zebrafish. Stress 24, 273–281. https://doi.org/10.1080/10253890.2020.1807511 (2021).
Onarheim, T., Janczak, A. M. & Nordgreen, J. The effects of social vs. individual housing of zebrafish on whole-body cortisol and behavior in two tests of anxiety. Front. Vet. Sci. 9, 859848. https://doi.org/10.3389/fvets.2022.859848 (2022).
Shams, S., Chatterjee, D. & Gerlai, R. Chronic social isolation affects thigmotaxis and whole-brain serotonin levels in adult zebrafish. Behav. Brain Res. 292, 283–287. https://doi.org/10.1016/j.bbr.2015.05.061 (2015).
Jeffrey, J. D. & Gilmour, K. M. Programming of the hypothalamic-pituitary–interrenal axis by maternal social status in zebrafish (Danio rerio). J. Exp. Biol. 219(11), 1734–1743. https://doi.org/10.1242/jeb.138826 (2016).
Oswald, M. & Robison, B. D. Strain-specific alteration of zebrafish feeding behavior in response to aversive stimuli. Can. J. Zool. 86(10), 1085–1094. https://doi.org/10.1139/Z08-085 (2008).
Fowler, L. A., Williams, M. B., D’Abramo, L. R. & Watts, S. A. Zebrafish nutrition: Moving forward. Zebrafish Biomed Res 33, 379–401. https://doi.org/10.1016/B978-0-12-812431-4.00033-6 (2020).
Eriegha, O. J. & Ekokotu, P. A. Factors affecting feed intake in cultured fish species: a review. Anim. Res. Int. 14(2), 2697–2709 (2017).
Brugman, S. The zebrafish as a model to study intestinal inflammation. Dev. Comp. Immunol. 64, 82–92. https://doi.org/10.1016/j.dci.2016.02.020 (2016).
Silverstein, J. T., Bosworth, B. G., Waldbieser, G. C. & Wolters, W. R. Feed intake in channel catfish: Is there a genetic component?. Aquac. Res. 32, 199–205. https://doi.org/10.1046/j.1355-557x.2001.00015.x (2001).
Besson, M. et al. Feed intake with genomic data to improve feed efficiency in sea bass. Front. Genet 10, 219. https://doi.org/10.3389/fgene.2019.00219 (2019).
de Verdal, H., Vandeputte, M., Mekkawy, W., Chatain, B. & Benzie, J. A. H. Quantifying the genetic parameters of feed efficiency in juvenile Nile tilapia Oreochromis niloticus. BMC Genet. https://doi.org/10.1186/s12863-018-0691-y (2018).
Thodesen, J., Gjerde, B., Grisdale-Helland, B. & Storebakken, T. Genetic variation in feed intake, growth and feed utilization in Atlantic salmon (Salmo salar). Aquaculture 194(3–4), 273–281. https://doi.org/10.1016/S0044-8486(00)00527-5 (2001).
Park, H. et al. Towards the development of a sustainable soya bean-based feedstock for aquaculture. Plant Biotechnol. J. 15, 227–236. https://doi.org/10.1111/pbi.12608 (2017).
Lin, S. & Luo, L. Effects of different levels of soybean meal inclusion in replacement for fish meal on growth, digestive enzymes and transaminase activities in practical diets for juvenile tilapia, Oreochromis niloticus × O. aureus. AFST 168(1–2), 80–87. https://doi.org/10.1016/j.anifeedsci.2011.03.012 (2011).
Zhou, Q. C., Mai, K. S., Tan, B. P. & Liu, Y. J. Partial replacement of fishmeal by soybean meal in diets for juvenile cobia (Rachycentron canadum). Aquac. Nutr. 11(3), 17–182. https://doi.org/10.1111/j.1365-2095.2005.00335.x (2005).
Macusi, E. D. et al. Protein fishmeal replacement in aquaculture: A systematic review and implications on growth and adoption viability. Sustainability 15(16), 12500. https://doi.org/10.3390/su151612500 (2023).
Blaufuss, P. & Trushenski, J. Exploring soy-derived alternatives to fish meal: Using soy protein concentrate and soy protein isolate in hybrid striped bass feeds. N. Am. J. Aquac. 74(1), 9–19. https://doi.org/10.1080/15222055.2011.635782 (2012).
Hua, K. et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 1(3), 316–329. https://doi.org/10.1016/j.oneear.2019.10.018 (2019).
Francis, G., Makkar, H. P. S. & Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197–227. https://doi.org/10.1016/S0044-8486(01)00526-9 (2001).
Krogdahl, Å., Bakke-McKellep, A. M. & Baeverfjord, G. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac. Nutr. 9, 361–371. https://doi.org/10.1046/j.1365-2095.2003.00264.x (2003).
Kwasek, K. et al. Does exposure of broodstock to dietary soybean meal affect its utilization in the offspring of zebrafish (Danio rerio)?. Animals 12(12), 1475. https://doi.org/10.3390/ani12121475 (2022).
de Verdal, H. et al. Improving feed efficiency in fish using selective breeding: A review. Rev. Aquacult. 10, 833–851. https://doi.org/10.1111/raq.12202 (2018).
Izquierdo, M. S., Fernández-Palacios, H. & Tacon, A. G. J. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197, 25–42. https://doi.org/10.1016/S0044-8486(01)00581-6 (2001).
Markovich, M. L., Rizzuto, N. V. & Brown, P. B. Diet affects spawning in zebrafish. Zebrafish 4(1), 69–74. https://doi.org/10.1089/zeb.2006.9993 (2007).
Newman, T., Jhinku, N., Meier, M. & Horsfield, J. Dietary intake influences adult fertility and offspring fitness in zebrafish. PLoS ONE 11(11), e0166394. https://doi.org/10.1371/journal.pone.0166394 (2016).
Muchlisin, Z. A. A general overview on some aspects of fish reproduction. Aceh Int. J. Sci. Technol. 3(1), 43–52. https://doi.org/10.13170/AIJST.0301.05 (2014).
Volkoff, H. & London, S. Nutrition and reproduction in fish. Encycl Reprod 6, 743–748. https://doi.org/10.1016/B978-0-12-809633-8.20624-9 (2018).
Dissinger, A., Rimoldi, S., Terova, G. & Kwasek, K. Chronic social isolation affects feeding behavior of juvenile zebrafish (Danio rerio). PLoS ONE 19(7), e0307967. https://doi.org/10.1371/journal.pone.0307967 (2024).
Horwood, J. W., Greer Walker, M. & Witthames, P. The effect of feeding levels on the fecundity of plaice (Pleuronectes platessa). J. Mar. Biol. Assoc 69(1), 81–92. https://doi.org/10.1017/s0025315400049122 (1989).
Higuchi, K. et al. Effect of long-term food restriction on reproductive performances in female yellowtail Seriola quinqueradiata. Aquaculture 486(3), 223–231. https://doi.org/10.1016/j.aquaculture.2017.12.032 (2018).
McCormick, M. I. Mothers matter: Crowding leads to stressed mothers and smaller offspring in marine fish. Ecology 87(5), 1104–1109. https://doi.org/10.1890/0012-9658(2006)87[1104:mmclts]2.0.co;2 (2006).
Abdollahpour, H., Falahatkar, B., Jafari, N. & Lawrence, C. Effect of stress severity on zebrafish (Danio rerio) growth, gonadal development and reproductive performance: Do females and males respond differently?. Aquaculture 522, 735099. https://doi.org/10.1016/j.aquaculture.2020.735099 (2020).
Lovell, R. T. Nutrition and feeding of fish (Van Nostrand Reinhold, New York, 1989).
Jobling, M. Growth studies with fish: Overcoming the problems of size variation. J. Fish Biol. 22, 153–157. https://doi.org/10.1111/j.1095-8649.1983.tb02946.x (1983).
Halver, J. E. & Hardy, R. W. Fish nutrition 3rd edn. (Academic Press, Cambridge, 2002).
Uusi-Heikillä, S., Wolter, C., Meinelt, T. & Arlinghaus, R. Size-dependent reproductive success of wild zebrafish Danio rerio in the laboratory. J. Fish Biol. 77, 552–569. https://doi.org/10.1111/j.1095-8649.2010.02698.x (2010).
Breck, J. E. Body composition in fishes: Body size matters. Aquaculture 433, 40–49. https://doi.org/10.1016/j.aquaculture.2014.05.049 (2014).
Ferosekhan, S. et al. Maternal size on reproductive performance, egg and larval quality in the endangered Asian catfish. Clarias magur. Aquac. Res. 52(11), 5168–5179. https://doi.org/10.1111/are.15385 (2021).
Amaral, I. P. G. & Johnston, I. A. Experimental selection for body size at age modifies early life-history traits and muscle gene expression in adult zebrafish. J. Exp. Biol. 215(22), 3895–2904. https://doi.org/10.1242/jeb.068908 (2012).
Meirelles, M. G. et al. Growth hormone overexpression induces hyperphagia and intestinal morphophysiological adaptations to improve nutrient uptake in zebrafish. Front. Physiol. 12, 723853. https://doi.org/10.3389/fphys.2021.723853 (2021).
Bertucci, J. I. et al. Nutrient regulation of endocrine factors influencing feeding and growth in fish. Front. Endocrinol. 10, 83. https://doi.org/10.3389/fendo.2019.00083 (2019).
Mennigen, J. A. et al. Social status-dependent regulation and function of the somatotropic axis in juvenile rainbow trout. Mol. Cell. Endocrinol. 554, 111709. https://doi.org/10.1016/j.mce.2022.111709 (2022).
Tian, J. T., Mai, K. & Liu, C. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). Fish Physiol. Biochem. 41, 773–787. https://doi.org/10.1007/s10695-015-0045-x (2015).
Izquierdo, M. S. et al. Nutritional programming through broodstock diets to improve utilization of very low fishmeal and fish oil diets in gilthead sea bream. Aquaculture 449, 18–26. https://doi.org/10.1016/j.aquaculture.2015.03.032 (2015).
Kwasek, K. et al. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PLoS ONE 15(3), 1–19. https://doi.org/10.1371/journal.pone.0225917 (2020).
Geurden, I. et al. The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS ONE 8(12), e83162. https://doi.org/10.1371/journal.pone.0083162 (2013).
Clarkson, M. et al. Early nutritional intervention can improve utilisation of vegetable-based diets in diploid and triploid Atlantic salmon (Salmo salar L.). Br. J. Nutr. 118(1), 17–29. https://doi.org/10.1017/S0007114517001842 (2017).
Kemski, M., Wick, M. & Dabrowski, K. Nutritional programming effects on growth and reproduction of broodstock and embryonic development of progeny in yellow perch (Perca flavescens) fed soybean meal-based diets. Aquaculture 497, 452–461. https://doi.org/10.1016/j.aquaculture.2018.07.001 (2018).
Kumar, S. et al. Does nutritional history impact on future performance and utilization of plant based diet in common carp?. Aquaculture 551, 737935. https://doi.org/10.1016/j.aquaculture.2022.737935 (2022).
Mania, M. et al. Expression and distribution of leptin and its receptors in the digestive tract of DIO (diet-induced obese) zebrafish. Anzeiger 212, 37–47. https://doi.org/10.1016/j.aanat.2017.03.005 (2017).
Volkoff, H. et al. Neuropeptides and the control of food intake in fish. Gen. Comp. Endocrinol. 142, 3–19. https://doi.org/10.1016/j.ygcen.2004.11.001 (2005).
Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901. https://doi.org/10.1038/29795 (1998).
Audira, G. et al. Zebrafish mutants carrying leptin a (lepa) gene deficiency display obesity, anxiety, less aggression and fear, circadian rhythm and color preference dysregulation. Int. J. Mol. Sci. 19(12), 4038. https://doi.org/10.3390/ijms19124038 (2018).
Szyf, M., McGowan, P. & Meaney, M. J. The social environment and the epigenome. Environ. Mol. Mutagen. 49(1), 46–60. https://doi.org/10.1002/em.20357 (2008).
Gavery, M. R. & Roberts, S. B. Epigenetic considerations in aquaculture. PeerJ 5, e4147. https://doi.org/10.7717/peerj.4147 (2017).
Soengas, J. L., Cerdá-Reverter, J. M. & Delgado, M. J. Central regulation of food intake in fish: An evolutionary perspective. J. Mol. Endocrinol. 60(4), R171–R199. https://doi.org/10.1530/JME-17-0320 (2018).
Perera, E. & Yúfera, M. Soybean meal and soy protein concentrate in early diet elicit different nutritional programming effects on juvenile zebrafish. Zebrafish 13(1), 61–69. https://doi.org/10.1089/zeb.2015.1131 (2016).
Carnovali, M., Valli, R., Banfi, G., Porta, G. & Mariotti, M. Soybean meal-dependent intestinal inflammation induces different patterns of bone-loss in adult zebrafish scale. Biomedicines 9(4), 393. https://doi.org/10.3390/biomedicines9040393 (2021).
Fuentes-Appelgren, P. et al. Effect of the dietary inclusion of soybean components on the innate immune system in zebrafish. Zebrafish 14(1), 41–49. https://doi.org/10.1089/zeb.2013.0934 (2014).
Hedrera, M. I. et al. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS ONE 8(7), e69983. https://doi.org/10.1371/journal.pone.0069983 (2013).
Fehrman-Cartes, K. et al. Anti-inflammatory effects of aloe vera on soy meal-induced intestinal inflammation in zebrafish. Fish Shellfish Immun. 95, 564. https://doi.org/10.1016/j.fsi.2019.10.075 (2019).
Micheloni, G. et al. Soy diet induces intestinal inflammation in adult zebrafish: Role of OTX and P53 family. Exp. Pathol-Jena. 103(1), 13–22. https://doi.org/10.1111/iep.12420 (2021).
Molinari, G. S. et al. Can intestinal absorption of dietary protein be improved through early exposure to plant-based diet?. PLoS ONE 15(6), e0228758. https://doi.org/10.1371/journal.pone.0228758 (2020).
Dhanasiri, A. et al. Dietary inclusion of plant ingredients induces epigenetic changes in the intestine of zebrafish. Epigenetics 15(10), 1035–1051. https://doi.org/10.1080/15592294.2020.1747777 (2020).
Volkoff, H. & Peter, R. E. Feeding behavior of fish and its control. Zebrafish 3(2), 131–140. https://doi.org/10.1089/zeb.2006.3.131 (2006).
Jobling, M. National research council (NRC): Nutrient requirements of fish and shrimp. Aquacult. Int. 20, 601–602. https://doi.org/10.1007/s10499-011-9480-6 (2012).
Fernandes, H., Coronado, M., Hernández, A. J., Allende, M. L. & Feijoo, C. G. Dietary protein requirement during juvenile growth of zebrafish (Danio rerio). Zebrafish 13(6), 548–555. https://doi.org/10.1089/zeb.2016.1303 (2016).
Patula, S. et al. Nutritional programming with dietary soybean meal and its effect on gut microbiota in zebrafish (Danio rerio). Zebrafish 18(2), 125–138. https://doi.org/10.1089/zeb.2020.1952 (2021).
Haahr, M. RANDOM.ORG: True random number service. Retrieved from https://www.random.org (2025).
Wallace, C. K. et al. Effectiveness of rapid cooling as a method of euthanasia for young zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 57(1), 58–63 (2018).
Stockhammer, O. W., Zakrzewska, A., Hegedûs, Z., Spaink, H. P. & Meijer, A. H. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J. Immunol. 182(9), 5641–5643. https://doi.org/10.4049/jimmunol.0900082 (2009).
Galindo-Villegas, J., García-Moreno, D., de Oliveira, S., Meseguer, J. & Mulero, V. Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish development. PNAS 109(39), E2605–E2614. https://doi.org/10.1073/pnas.1209920109 (2012).
Yossa, R., Sarker, P. K., Karanth, S., Ekker, M. & Vandenberg, G. W. Effects of dietary biotin and avidin on growth, survival, feed conversion, biotin status and gene expression of zebrafish Danio rerio. Comp. Biochem. Phys. B. 160(4), 150–158. https://doi.org/10.1016/j.cbpb.2011.07.005 (2011).