Maue, R. N. Recent historically low global tropical cyclone activity. Geophys. Res. Lett. 38, 673–684 (2001).
Xu, P. et al. Structural changes in the Pacific–Japan pattern in the late 1990s. J. Clim. 32, 607–621 (2019).
Horinouchi, T. et al. Moisture supply, jet, and silk-road wave train associated with the prolonged heavy rainfall in Kyushu, Japan in early July 2020. Sci. Online Lett. Atmos. 17, 1–8 (2021).
Kossin, J. P., Olander, T. L. & Knapp, K. R. Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 26, 9960–9976 (2013).
Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).
Kossin, J. P., Emanuel, K. A. & Camargo, S. J. Past and projected changes in western North Pacific tropical cyclone exposure. J. Clim. 29, 5725–5739 (2016).
Yokoi, S. & Takayabu, Y. N. Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. J. Meteorol. Soc. Jpn. 87, 525–538 (2009).
Murakami, H. et al. Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Clim. 25, 3237–3260 (2012).
Park, D. S. R., Ho, C. H. & Kim, J. H. Growing threat of intense tropical cyclones to East Asia over the period 1977–2010. Environ. Res. Lett. 9, 014008 (2014).
Sharmila, S. & Walsh, K. Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nat. Clim. Change 8, 730–736 (2018).
Zhan, R. & Wang, Y. Weak tropical cyclones dominate the poleward migration of the annual mean location of lifetime maximum intensity of Northwest Pacific tropical cyclones since 1980. J. Clim. 30, 6873–6882 (2017).
Daloz, A. S. & Camargo, S. J. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?. Clim. Dyn. 50, 705–715 (2018).
Feng, X. B., Klingaman, N. P. & Hodges, K. L. Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality. Nat. Clim. 12, 1–11 (2021).
Song, J. & Klotzbach, P. J. What has controlled the poleward migration of annual averaged location of tropical cyclone lifetime maximum intensity over the western North Pacific since 1961?. Geophys. Res. Lett. 45, 1148–1156 (2018).
Wang, R. & Wu, L. Influence of track changes on the poleward shift of LMI location of western North Pacific tropical cyclones. J. Clim. 32, 8437–8445 (2019).
Zhao, H. et al. Interannual and interdecadal drivers of meridional migration of western North Pacific tropical cyclone lifetime maximum intensity location. J. Clim. 35, 2709–2722 (2022).
Feng, X. B. Translation speed slowdown and poleward migration of western North Pacific tropical cyclones. npj Clim. Atmos. Sci. 7, 196 (2024).
Sun, Y. et al. A recent reversal in the poleward shift of western North Pacific tropical cyclones. Geophys. Res. Lett. 45, 9944–9952 (2018).
Guo, Y. P. & Tan, Z. M. Influence of track change on the inconsistent poleward migration of typhoon activity. J. Geophys. Res. Atmos. 127, e2022JD036640 (2022).
Lin, J., Lee, C. Y., Camargo, S. J. & Sobel, A. Poleward migration of the latitude of maximum tropical cyclone intensity—forced or natural? J. Clim. 37, 5453–5463 (2024).
Dong, B. & Dai, A. The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Clim. Dyn. 45, 2667–2681 (2015).
Li, W., Li, L. & Deng, Y. Impact of the interdecadal Pacific oscillation on tropical cyclone activity in the North Atlantic and eastern North Pacific. Sci. Rep. 5, 12358 (2015).
Zhao, J. et al. Distinct modulations of northwest Pacific tropical cyclone precipitation by Atlantic multidecadal oscillation and interdecadal Pacific oscillation. Geophys. Res. Lett. 51, e2023GL107749 (2024).
Knight, J. R., Folland, C. K. & Scaife, A. A. Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett. 33, L17706 (2006).
Klotzbach, P. J. The influence of El Niño-Southern Oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J. Clim. 24, 721–731 (2011).
Song, K. et al. Influence of the Atlantic multidecadal oscillation on the rapid intensification magnitude of tropical cyclones over the western North Pacific. J. Clim. 37, 689–730 (2024).
Zhao, J., Zhan, R., Wang, Y. & Xu, H. Contribution of the interdecadal Pacific oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Clim. 31, 8211–8224 (2018).
Tennille, S. A. & Ellis, K. N. Spatial and temporal trends in the location of the lifetime maximum intensity of tropical cyclones. Atmosphere 8, 198 (2017).
Manganello, J. V. et al. Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J. Clim. 25, 3867–3893 (2012).
Strachan, J. et al. Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J. Clim. 26, 133–152 (2013).
Camargo, S. J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Clim. 26, 9880–9902 (2013).
Moon, Y. et al. Azimuthally averaged wind and thermodynamic structures of tropical cyclones in global climate models and their sensitivity to horizontal resolution. J. Clim. 33, 1575–1595 (2019).
Moon, I. J., Kim, S. H., Klotzbach, P. & Chan, J. C. L. Roles of interbasin frequency changes in the poleward shifts of the maximum intensity location of tropical cyclones. Environ. Res. Lett. 10, 104004 (2015).
Zhang, W. et al. Tropical cyclone precipitation in the HighResMIP atmosphere-only experiments of the PRIMAVERA Project. Clim. Dyn. 57, 253–273 (2021).
Huang, H., Patricola, C. M. & Collins, W. D. The influence of ocean coupling on simulated and projected tropical cyclone precipitation in the HighResMIP-PRIMAVERA simulations. Geophys. Res. Lett. 48, e2021GL094801 (2021).
Liu, J. C., Yuan, C. X. & Luo, J. J. Impacts of model resolution on responses of western North Pacific tropical cyclones to ENSO in the HighResMIP-PRIMAVERA ensemble. Front. Earth Sci. 11, 1169885 (2023).
Lin, J., Lee, C. Y., Camargo, S. J. & Sobel, A. Poleward migration of the latitude of maximum tropical cyclone intensityforcedor natural? J. Clim. 37, 5453–5463 (2024).
Haarsma, R. et al. HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR-description, model computational performance and basic validation. Geosci. Model Dev. Discuss. 2020, 1–37 (2020).
Roberts, M. J. et al. Impact of model resolution on tropical cyclone simulation using the HighResMIP-PRIMAVERA multi-model ensemble. J. Clim. 33, 2557–2583 (2020).
Cherchi, A. et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Clim. 11, 185–209 (2019).
Voldoire, A. et al. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).
Roberts, M. J. et al. Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments. Geosci. Model Dev. 12, 4999–5028 (2019).
Haarsma, R. J. et al. High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).
Gutjahr, O. et al. Max Planck Institute Earth System Model (MPI-ESM1. 2) for the high-resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Li, H. et al. Subtropical high affects interdecadal variability of tropical cyclone genesis in the South China Sea. J. Geophys. Res. Atmos. 124, 6379–6392 (2019).
Li, H. et al. Unusual tropical cyclone tracks under the influence of upper-tropospheric cold low. Mon. Weather Rev. 152, 39–58 (2024).
Shimada, U. Variability of environmental conditions for tropical cyclone rapid intensification in the western North Pacific. J. Clim. 35, 4437–4454 (2022).
Walsh, K. J. E. et al. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Change 7, 65–89 (2016).
Ose, T., Song, Y. & Kitoh, A. Sea surface temperature in the South China Sea an index for the Asian monsoon and ENSO system. J. Meteorol. Soc. Jpn. 75, 1091–1107 (1997).
Ose, T. Future precipitation changes during summer in East Asia and model dependence in high-resolution MRI-AGCM experiments. Hydrol. Res. Lett. 11, 168–174 (2017).
Ose, T. Characteristics of future changes in summertime East Asian monthly precipitation in MRI-AGCM global warming experiments. J. Meteorol. Soc. Jpn. 97, 317–335 (2019).
Ose, T., Takaya, Y., Maeda, S. & Nakaegawa, T. Resolution of summertime East Asian pressure pattern and southerly monsoon wind in CMIP5 multi-model future projections. J. Meteorol. Soc. Jpn. 98, 927–944 (2020).
Ose, T., Endo, H., Takaya, Y., Maeda, S. & Nakaegawa, T. Robust and uncertain sea-level pressure patterns over summertime East Asia in the CMIP6 multi-model future projections. J. Meteorol. Soc. Jpn. 100, 631–645 (2022).
Ose, T., Endo, H. & Nakaegawa, T. Emergence of future sea-level pressure patterns in recent summertime East Asia. J. Meteorol. Soc. Jpn. 102, 265–283 (2024).
Boisséson, E. D. et al. How robust is the recent strengthening of the tropical Pacific trade winds?. Geophys. Res. Lett. 41, 4398–4405 (2014).
Ma, S. & Zhou, T. Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Clim. 29, 3097–3118 (2016).
Li, Y. et al. Long-term trend of the tropical Pacific trade winds under global warming and its causes. J. Geophys. Res. Oceans 124, 2626–2640 (2019).
Zhao, M. & Held, I. M. TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Clim. 25, 2995–3009 (2012).
Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 129, 569–585 (2020).
Laprise, R. The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Weather Rev. 129, 569–585 (1992).
Giorgi, F., Jones, C. & Asrar, G. R. Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull. 58, 175 (2009).
Wang, Y., Satoh, M., Zhan, J., Zhao, J. & Xie, S. P. Tropical sea surface warming patterns and tropical cyclone activity: a review. Adv. Atmos. Sci 42, 1996–2017 (2025).
Roberts, C. D. et al. ECMWF ECMWF-IFS-HR model output prepared for CMIP6 HighResMIP. Earth Syst. Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.2461 (2017).
Tang, Y., Huangfu, J., Huang, R. & Chen, W. Simulation and projection of tropical cyclone activities over the western North Pacific by CMIP6 HighResMIP. J. Clim. 35, 7771–7794 (2022).
Li, Z. & Zhou, W. Poleward migration of tropical cyclones over the western North Pacific in the CMIP6-HighResMIP models constrained by observations. npj Clim. Atmos. Sci. 7, 161 (2024).
Haarsma, R. J. et al. High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).
Roberts, M. J. et al. Projected future changes in tropical cyclones using the CMIP6 HighResMIP multi-model ensemble. Geophys. Res. Lett. 47, 1–12 (2020).
Hong, S. Y., Dudhia, J. & Chen, S. H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 132, 103–120 (2004).
Hong, S. Y., Noh, Y. & Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).
Paulson, C. A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9, 857–861 (1970).
Chen, F. & Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001).
Kain, J. S. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181 (2004).
Collins, W. D. et al. Description of the NCAR community atmosphere model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+ Str. 226, 1326–1334 (2004).
Hodges, K., Cobb, A. & Vidale, P. L. How well are tropical cyclones represented in reanalysis datasets?. J. Clim. 30, 5243–5264 (2017).
Zhao, J. et al. Untangling impacts of global warming and Interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density. Sci. Adv. 6, eaba6813 (2020).
Lian, T. Uncertainty in detecting trend: a new criterion and its applications to global SST. Clim. Dyn. 49, 2881–2893 (2017).
Li, Y. et al. Recent increases in tropical cyclone rapid intensification events in global offshore regions. Nat. Commun. 14, 5167 (2023).
He, J. H., Zhou, B., Wen, M. & Li, F. Vertical circulation structure, interannual variation features and variation mechanism of western pacific subtropical high. Adv. Atmos. Sci. 18, 497–510 (2001).
Emanuel, K. A. & Nolan, D. S. Tropical cyclone activity and the global climate system. 26th. Conf. Hurric. Trop. Meteorol. 10A.2, 240–241 (2004).
Wang, B. & Murakami, H. Dynamic genesis potential index for diagnosing present-day and future global tropical cyclone genesis. Environ. Res. Lett. 15, 114008 (2020).
Camargo, S. J. et al. Characteristics of model tropical cyclone climatology and the large-scale environment. J. Clim. 33, 4463–4487 (2020).
Zhao, H. et al. On the relationship between eastern China aerosols and western North Pacific tropical cyclone activity. Atmos. Res. 284, 106604 (2023).
Jian, D. et al. Projected poleward migration of western North Pacific tropical cyclone genesis. Geophys. Res. Lett. 51, e2024GL110031 (2024).
Gutiérrez, J. M. et al. Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Clim. 26, 171–188 (2013).
Gutiérrez, J. M. et al. An intercomparison of a large ensemble of statistical downscaling methods over Europe: results from the VALUE perfect predictor cross-validation experiment. Int. J. Climatol. 39, 3750–3785 (2019).
Fox, J. & Monette, G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 87, 178–183 (1992).