Wilby, R. L. & Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the river thames, UK. Water Resour. Res. 42, 1 (2006).


Google Scholar
 

Marx, A. et al. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3°C. Hydrol. Earth Syst. Sci. 22, 1017–1032 (2018).

ADS 

Google Scholar
 

Smakhtin, V. U. Low flow hydrology: a review. J. Hydrol. 240, 147–186 (2001).

ADS 

Google Scholar
 

Diaz-Nieto, J. & Wilby, R. L. A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river thames, united Kingdom. Clim. Change. 69, 245–268 (2005).

ADS 

Google Scholar
 

Novotny, E. V. & Stefan, H. G. Stream flow in minnesota: indicator of climate change. J. Hydrol. 334, 319–333 (2007).

ADS 

Google Scholar
 

Staudinger, M., Stahl, K., Seibert, J., Clark, M. P. & Tallaksen, L. M. Comparison of hydrological model structures based on recession and low flow simulations. Hydrol. Earth Syst. Sci. 15, 3447–3459 (2011).

ADS 

Google Scholar
 

Tegegne, G., Park, D. K. & Kim, Y. O. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the upper blue nile river basin. J. Hydrology Reg. Stud. 14, 49–66 (2017).


Google Scholar
 

Lee, J., Kim, Y. & Wang, D. Assessing the characteristics of recent drought events in South Korea using WRF-Hydro. J. Hydrol. 607, 127459 (2022).


Google Scholar
 

Lee, J. W. et al. Evaluation of agricultural drought in South Korea using socio-economic drought information. Int. J. Disaster Risk Reduct. 74, 102936 (2022).


Google Scholar
 

Jung, H. C. et al. Towards a soil moisture drought monitoring system for South Korea. J. Hydrol. 589, 125176 (2020).


Google Scholar
 

Moazzam, M. F. U., Rahman, G., Munawar, S., Farid, N. & Lee, B. G. Spatiotemporal rainfall variability and drought assessment during past five decades in South Korea using SPI and SPEI. Atmosphere 13, 292 (2022).

ADS 

Google Scholar
 

Kim, S. J. et al. Developing Spatial agricultural drought risk index with controllable geo-spatial indicators: A case study for South Korea and Kazakhstan. Int. J. Disaster Risk Reduct. 54, 102056 (2021).


Google Scholar
 

Park, C. K., Lee, S., Yoon, H. & Kam, J. Sub-seasonal to seasonal outlook of the 2022–23 Southwestern Korea meteorological drought. Environ. Res. Lett. 18, 104039 (2023).

ADS 

Google Scholar
 

Lee, S., Lee, T. & Lee, J. H. Development of alarm grit ratio for drought forecasting and its application to the 2021–2023 drought. J. Korean Soc. Hazard. Mitig. 23, 23–30 (2023).


Google Scholar
 

National Drought Information-Analysis Center. 2013–2018 Sustained Drought Analysis & Assessment Report (2018).

Ministry of Environment and K-water. White Paper on Drought in Seomjingang River Basin of Yeongsan River Basin (2022–2023) (2023).

Perrin, C., Michel, C. & Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 279, 275–289 (2003).

ADS 

Google Scholar
 

Le Moine, N. Le bassin versant de surface vu par le souterrain: une voie d’amélioration des performances et du réalisme des modèles pluie-débit? (2008).

Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T. & Andréassian V. A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. J. Hydrol. 411, 66–76 (2011).

ADS 

Google Scholar
 

Lemaitre-Basset, T. et al. Climate change impact and uncertainty analysis on hydrological extremes in a French mediterranean catchment. Hydrol. Sci. J. 66, 888–903 (2021).


Google Scholar
 

Sauquet, E., Beaufort, A., Sarremejane, R. & Thirel, G. Predicting flow intermittence in France under climate change. Hydrol. Sci. J. 66, 2046–2059 (2021).


Google Scholar
 

Tyralis, H. & Papacharalampous, G. Hydrological post-processing for predicting extreme quantiles. J. Hydrol. 617, 129082 (2023).


Google Scholar
 

Tyralis, H., Papacharalampous, G. & Khatami, S. Expectile-based hydrological modelling for uncertainty estimation: life after mean. J. Hydrol. 617, 128986 (2023).


Google Scholar
 

Ndiaye, P. M., Bodian, A., Dezetter, A., Ogilvie, A. & Goudiaby, O. Sensitivity of global hydrological models to potential evapotranspiration Estimation methods in the Senegal river basin (West Africa). J. Hydrology: Reg. Stud. 53, 101823 (2024).


Google Scholar
 

Im, S. S., Yoo, D. G. & Kim, J. H. Improvement of GR4J model applying soil moisture accounting process and its application in Korea basin. J. Korean Soc. Hazard. Mitigation. 12, 255–262 (2012).


Google Scholar
 

Ajmal, M., Waseem, M., Wi, S. & Kim, T. W. Evolution of a parsimonious rainfall–runoff model using soil moisture proxies. J. Hydrol. 530, 623–633 (2015).

ADS 

Google Scholar
 

Kim, D., Jung, I. W. & Chun, J. A. A comparative assessment of rainfall–runoff modelling against regional flow duration curves for ungauged catchments. Hydrol. Earth Syst. Sci. 21, 5647–5661 (2017).


Google Scholar
 

Seo, S. B., Kim, Y. O., Kim, Y. & Eum, H. I. Selecting climate change scenarios for regional hydrologic impact studies based on climate extremes indices. Clim. Dyn. 52, 1595–1611 (2019).


Google Scholar
 

Yu, J. U., Park, M. H., Kim, J. G. & Kwon, H. H. Evaluation of conceptual rainfall-runoff models for different flow regimes and development of ensemble model. J. Korea Water Resour. Association. 54, 105–119 (2021).


Google Scholar
 

Noh, S. J., Lee, G., Kim, B., Jo, J. & Woo, D. K. Climate change impact analysis on water supply reliability and flood risk using combined rainfall-runoff and reservoir operation modeling: Hapcheon-Dam catchment case. J. Korea Water Resour. Association. 56, 765–774 (2023).


Google Scholar
 

Shin, M. J. & Kim, C. S. Assessment of the suitability of rainfall–runoff models by coupling performance statistics and sensitivity analysis. Hydrol. Res. 48, 1192–1213 (2016).


Google Scholar
 

Shin, M. J. & Jung, Y. Using a global sensitivity analysis to estimate the appropriate length of calibration period in the presence of high hydrological model uncertainty. J. Hydrol. 607, 127546 (2022).


Google Scholar
 

Lee, M. H., Qiu, L., Ha, S., Im, E. S. & Bae, D. H. Future projection of low flows in the Chungju basin, Korea and their uncertainty decomposition. Int. J. Climatol. 42, 157–174 (2022).


Google Scholar
 

Kim, D., Kim, E., Lee, S. C., Kim, E. & Shin, J. A decision-centric impact assessment of operational performance of the Yongdam dam, South Korea. J. Korea Water Resour. Association. 55, 205–215 (2022).


Google Scholar
 

Oudin, L., Michel, C. & Anctil, F. Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 1—Can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? J. Hydrol. 303, 275–289 (2005).

ADS 

Google Scholar
 

Oudin, L. et al. Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 303, 290–306 (2005).

ADS 

Google Scholar
 

Abdallah, M. et al. Hydrological insights: comparative analysis of gridded potential evapotranspiration products for hydrological simulations and drought assessment. J. Hydrology: Reg. Stud. 57, 102113 (2025).


Google Scholar
 

Birhanu, D., Kim, H., Jang, C. & Park, S. Does the complexity of evapotranspiration and hydrological models enhance robustness? Sustainability 10, 2837 (2018).

Birhanu, D., Kim, H. & Jang, C. Effectiveness of introducing crop coefficient and leaf area index to enhance evapotranspiration simulations in hydrologic models. Hydrol. Process. 33, 2206–2226 (2019).

ADS 

Google Scholar
 

Thiessen, A. H. Precipitation averages for large areas. Mon. Weather Rev. 39, 1082–1089 (1911).

ADS 

Google Scholar
 

Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).

ADS 

Google Scholar
 

Kling, H., Fuchs, M. & Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 424–425, 264–277 (2012).


Google Scholar
 

Sorooshian, S., Duan, Q. & Gupta, V. K. Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model. Water Resour. Res. 29, 1185–1194 (1993).

ADS 

Google Scholar
 

Yapo, P. O., Gupta, H. V. & Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. J. Hydrol. 181, 23–48 (1996).

ADS 
CAS 

Google Scholar
 

Song, J. H., Her, Y., Park, J. & Kang, M. S. Exploring parsimonious daily rainfall-runoff model structure using the hyperbolic tangent function and tank model. J. Hydrol. 574, 574–587 (2019).

ADS 

Google Scholar
 

Riley, S. J., DeGloria, S. D. & Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27 (1999).


Google Scholar
 

Horton, R. E. Drainage-basin characteristics. Eos Trans. Am. Geophys. Union. 13, 350–361 (1932).


Google Scholar
 

Atkinson, S. E., Woods, R. A. & Sivapalan, M. Climate and landscape controls on water balance model complexity over changing timescales. Water Resour. Res. 38 (1-), 50 (2002).

ADS 

Google Scholar
 

Vremec, M., Collenteur, R. A. & Birk, S. Technical note: improved handling of potential evapotranspiration in hydrological studies with PyEt. Hydrol. Earth Syst. Sci. Dis. 1–23. https://doi.org/10.5194/hess-2022-417 (2023).

Linacre, E. T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric. Meteorol. 18, 409–424 (1977).


Google Scholar
 

Romanenko, V. A. Computation of the autumn soil moisture using a universal relationship for a large area. In Proc. of Ukrainian Hydrometeorological Research Institute, vol. 3, 12–25 (Kiev, 1961).

Hargreaves, G. H. & Samani, Z. A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 108, 225–230 (1982).


Google Scholar
 

Jensen, M. E. & Haise, H. R. Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Div. 89, 15–41 (1963).


Google Scholar
 

Jensen, M. E., Burman, R. D. & Allen, R. G. Evapotranspiration and Irrigation Water Requirements (ASCE, 1990).

Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements 300. https://www.fao.org/4/X0490E/X0490E00.htm (1998).

Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 100, 81–92 (1972).

ADS 

Google Scholar
 

Chen, T. C., Wang, S. Y., Huang, W. R. & Yen, M. C. Variation of the East Asian summer monsoon rainfall. J. Clim. 17, 744–762 (2004).

ADS 

Google Scholar
 

Park, C. et al. Record-breaking summer rainfall in South Korea in 2020: synoptic characteristics and the role of large-scale circulations. Mon. Weather Rev. 149, 3085–3100 (2021).

ADS 

Google Scholar
 

Coron, L., Thirel, G., Delaigue, O., Perrin, C. & Andréassian, V. The suite of lumped GR hydrological models in an R package. Environ. Model. Softw. 94, 166–171 (2017).


Google Scholar
 

Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95—International Conference on Neural Networks, vol. 4, 1942–1948 (1995).

Jakubcová, M., Máca, P. & Pech, P. Parameter estimation in rainfall-runoff modelling using distributed versions of particle swarm optimization algorithm. Math. Probl. Eng. 2015, 968067 (2015).

Shi, Y. & Eberhart, R. C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, 1945–1950 (1999).

Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 10, 282–290 (1970).

ADS 

Google Scholar
 

Knoben, W. J. M., Freer, J. E. & Woods, R. A. Technical note: inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci. 23, 4323–4331 (2019).

ADS 

Google Scholar
 

Rogelis, M. C., Werner, M., Obregón, N. & Wright, N. Hydrological model assessment for flood early warning in a tropical high mountain basin. Hydrol. Earth Syst. Sci. Dis. 1–36. https://doi.org/10.5194/hess-2016-30 (2016).

Seabold, S. & Perktold, J. Econometric and statistical modeling with python. In 9th Python in Science Conference (2010).

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods. 17, 261–272 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tada, T. & Beven, K. J. Hydrological model calibration using a short period of observations. Hydrol. Process. 26, 883–892 (2012).

ADS 

Google Scholar
 

Razavi, S. & Tolson, B. A. An efficient framework for hydrologic model calibration on long data periods. Water Resour. Res. 49, 8418–8431 (2013).


Google Scholar
 

Liu, D. et al. Entropy of hydrological systems under small samples: uncertainty and variability. J. Hydrol. 532, 163–176 (2016).

ADS 

Google Scholar
 

Arsenault, R., Brissette, F. & Martel, J. L. The hazards of split-sample validation in hydrological model calibration. J. Hydrol. 566, 346–362 (2018).

ADS 

Google Scholar
 

Myers, D. T. et al. Choosing an arbitrary calibration period for hydrologic models: how much does it influence water balance simulations? Hydrol. Process. 35, e14045 (2021).


Google Scholar
 

Merz, R., Parajka, J. & Blöschl, G. Scale effects in conceptual hydrological modeling. Water Resour. Res. 45, 1 (2009).


Google Scholar
 

Parajka, J. et al. Comparative assessment of predictions in ungauged basins—Part 1: Runoff-hydrograph studies. Hydrol. Earth Syst. Sci. 17, 1783–1795 (2013).

ADS 

Google Scholar
 

van Esse, W. R. et al. The influence of conceptual model structure on model performance: a comparative study for 237 French catchments. Hydrol. Earth Syst. Sci. 17, 4227–4239 (2013).

ADS 

Google Scholar
 

Poncelet, C. et al. Process-based interpretation of conceptual hydrological model performance using a multinational catchment set. Water Resour. Res. 53, 7247–7268 (2017).

ADS 

Google Scholar
 

Kan, G. et al. Computer aided numerical methods for hydrological model calibration: an overview and recent development. Arch. Comput. Methods Eng. 26, 35–59 (2019).

MathSciNet 

Google Scholar
 

Beven, K. & Binley, A. The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 6, 279–298 (1992).

ADS 

Google Scholar
 

Mirzaei, M., Huang, Y. F., El-Shafie, A. & Shatirah, A. Application of the generalized likelihood uncertainty Estimation (GLUE) approach for assessing uncertainty in hydrological models: a review. Stoch. Environ. Res. Risk Assess. 29, 1265–1273 (2015).


Google Scholar
 

Kim, R., Won, J., Choi, J., Lee, O. & Kim, S. Application of bayesian approach to parameter Estimation of TANK model: comparison of MCMC and GLUE methods. J. Korean Soc. Water Environ. 36, 300–313 (2020).


Google Scholar
 

Tolson, B. A. & Shoemaker, C. A. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res. 43, 1 (2007).


Google Scholar