Allen, J. T. et al. Understanding hail in the Earth system. Rev. Geophys. 58, e2019RG000665 (2020).
Raupach, T. H. et al. The effects of climate change on hailstorms. Nat. Rev. Earth Environ. 2, 213–226 (2021).
Stocker, T. Climate Change 2013: The Physical Science Basis. https://www.ipcc.ch/report/ar5/wg1/ (2014).
IPCC. Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/ (2021).
IPCC. Climate Change 2014: Synthesis Report https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (2014).
Changnon, S. A. & Changnon, D. Long-term fluctuations in hail incidences in the United States. J. Clim. 13, 658–664 (2000).
Allen, J. T. & Tippett, M. K. The characteristics of United States hail reports: 1955-2014. J. Sev. Storms Meteorol. 10, 1–31 (2015).
Jin, H.-G., Lee, H., Lkhamjav, J. & Baik, J.-J. A hail climatology in South Korea. Atmos. Res. 188, 90–99 (2017).
Li, M., Zhang, Q. & Zhang, F. Hail day frequency trends and associated atmospheric circulation patterns over China during 1960–2012. J. Clim. 29, 7027–7044 (2016).
Li, X. et al. Climatology of hail frequency and size in China, 1980–2015. J. Appl. Meteorol. Climatol. 57, 875–887 (2018).
Lkhamjav, J., Jin, H.-G., Lee, H. & Baik, J.-J. A hail climatology in Mongolia. Asia Pac. J. Atmos. Sci. 53, 501–509 (2017).
Ni, X., Muehlbauer, A., Allen, J. T., Zhang, Q. & Fan, J. A climatology and extreme value analysis of large hail in China. Mon. Weather Rev. 148, 1431–1447 (2020).
Ni, X. et al. Decreased hail size in China since 1980. Sci. Rep. 7, 1–6 (2017).
Xie, B., Zhang, Q., Wang, Y. Trends in hail in China during 1960–2005. Geophys. Res. Lett. 35, 13 (2008).
Zhang, Q., Ni, X. & Zhang, F. Decreasing trend in severe weather occurrence over China during the past 50 years. Sci. Rep. 7, 1–8 (2017).
Fei, J. Meteorological history and historical climate of China. ORE. Clim. Sci. https://doi.org/10.1093/acrefore/9780190228620.013.594 (2018).
Chen, S., Luo, Z. & Pan, X. Natural disasters in China: 1900–2011. Nat. Hazards 69, 1597–1605 (2013).
Bai, S. General History of China, Vol 91st edn (Shanghai People’s Publishing House, 1999).
Lee, H. F. & Zhang, D. D. Natural disasters in northwestern China, AD 1270-1949. Clim. Res. 41, 245–257 (2010).
Allen, J. T., Tippett, M. K. & Sobel, A. H. An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst. 7, 226–243 (2015).
Mann, M. E. & Emanuel, K. A. Atlantic hurricane trends linked to climate change. Eos Trans. AGU 87, 233−241 (2006).
Ting, M., Kushnir, Y., Seager, R. & Li, C. Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim. 22, 1469–1481 (2009).
Zhou, Z., Zhang, Q., Allen, J. T., Ni, X. & Ng, C. P. How many types of severe hailstorm environments are there globally? Geophys. Res. Lett. 48, e2021GL095485 (2021.).
Feng, S. et al. Northern Hemisphere temperature reconstruction during the last millennium using multiple annual proxies. Clim. Res. 56, 231–244 (2013).
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. & Karlen, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005).
D’Arrigo, R., Wilson, R.& Jacoby, G. On the long-term context for late twentieth century warming. J. Geophys. Res. 111, D3 (2006).
Hegerl, G. C. et al. Detection of human influence on a new, validated 1500 year temperature reconstruction. J. Clim. 20, 650–666 (2007).
Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USAsa. 105, 13252–13257 (2008).
Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Data Sci. Adapt. Anal. 1, 1–41 (2009).
Torres, M. E., Colominas, M. A., Schlotthauer, G. & Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing 4144−4147 (ICASSP, 2011).
Shen, Z.-Y & Ban, W.-C. Machine learning model combined with CEEMDAN algorithm for monthly precipitation prediction. Earth Sci. Inform. 16, 1821–1833 (2023).
Bo-Tao, Z. Weakening of winter North Atlantic oscillation signal in spring precipitation over Southern China. Atmos. Ocean. Sci. Lett. 6, 248–252 (2013).
Han-Lie, X., Juan, F. & Cheng, S. Impact of preceding summer north atlantic oscillation on early autumn precipitation over central China. Atmos. Ocean. Sci. Lett. 6, 417–422 (2013).
Qian, C. & Zhou, T. Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J. Clim. 27, 1210–1222 (2014).
Xiao, M., Zhang, Q. & Singh, V. P. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Climatol. 35, 3556–3567 (2015).
Gao, T., Wang, H. J. & Zhou, T. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmos. Res. 197, 379–389 (2017).
Lou, M., Li, C., Hao, S. & Liu, J. Variations of winter precipitation over Southeastern China in association with the North Atlantic oscillation. J. Meteorol. Res. 31, 476–489 (2017).
Peng, Y. Simulated interannual teleconnection between the summer North Atlantic Oscillation and summer precipitation in eastern China during the last millennium. Geophys. Res. Lett. 45, 7741–7747 (2018).
Zhou, X., Jiang, D. & Lang, X. Unstable relationship between the Pacific decadal oscillation and Eastern China summer precipitation: insights from the medieval climate anomaly and little ice age. Holocene 30, 799–809 (2020).
Xue, J. et al. The combined influences of solar radiation and PDO on precipitation over Eastern China during the last millennium. Clim. Dyn. 60, 1137–1150 (2022).
Shen, C., Wang, W.-C., Gong, W.& Hao Z. A Pacific Decadal Oscillation record since 1470 AD reconstructed from proxy data of summer rainfall over eastern China. Geophys. Res. Lett. 33, 3 (2006).
Jiang, N., Yan, Q., Xu Z., Wang, H. Divergent response of eastern China precipitation to the Pacific decadal oscillation during the last Interglacial. Quat. Sci. Rev. 319, 108344 (2023).
Kiranyaz, S., Ince, T., Hamila, R., Gabbouj, M. Convolutional neural networks for patient-specific ECG classification. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2608−2611 (IEEE, 2015).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).
Qin, D. et al. A novel combined prediction scheme based on CNN and LSTM for urban PM2.5 concentration. IEEE Access 7, 20050–20059 (2019).
Kiranyaz, S. et al. 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021).
Hao, W., Pengcheng, Y., Wei, H., Junhu, Z. & Guolin, F. Detection of decadal phase transition and early warning signals of PDO in recent and next 100 years. Chin. J. Atmos. Sci. 46, 225–236 (2022).
Blair, S. & Leighton, J. Creating high-resolution hail datasets using social media and post-storm ground surveys. Electron. J. Oper. Meteorol. 13, 32–45 (2012).
Tuovinen, J.-P., Punkka, A.-J., Rauhala, J., Hohti, H. & Schultz, D. M. Climatology of severe hail in Finland: 1930–2006. Mon. Weather Rev. 137, 2238–2249 (2009).
Olaniyi, B. A. Historical analysis of calendars-Chinese calendars and world calendars. Asia. Jour. Rese. Soci. Scie. Human. 4, 114–130 (2014).
Aslaksen, H. The Mathematics of the Chinese Calendar. (National University of Singapore, 2010).
Jiang, X. The Studies of Heaven and Earth in Ancient China 1st edn, Vol. 521 (Springer, 2021).
Deng, K. G. Unveiling China’s true population statistics for the pre-modern era with official census data. Popul. Rev. 43, 32–69 (2004).
Porter, S. E., Mosley-Thompson, E., Thompson, L. G. & Wilson, A. B. Reconstructing an interdecadal Pacific oscillation index from a Pacific basin–wide collection of ice core records. J. Clim. 34, 3839–3852 (2021).
Grove, C. A. et al. Madagascar corals reveal a multidecadal signature of rainfall and river runoff since 1708. Clim 9, 641–656 (2013).
Henley, B. J. Pacific decadal climate variability: Indices, patterns and tropical-extratropical interactions. Glob. Planet. Change 155, 42–55 (2017).
Heyerdahl, E. K., Morgan, P. & Riser, I. I. J. P. Multi-season climate synchronized historical fires in dry forests (1650–1900), northern rockies, USA. Ecology 89, 705–716 (2008).
Landrum, L. et al. Last Millennium Climate and Its Variability in CCSM4. J. Clim. 26, 1085–1111 (2013).
Ortega, P. et al. A model-tested North Atlantic oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).
Heymsfield, A., Szakáll, M., Jost, A., Giammanco, I. & Wright, R. A comprehensive observational study of graupel and hail terminal velocity, mass flux, and kinetic energy. J. Atmos. Sci. 75, 3861–3885 (2018).
Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 454, 903–995 (1998).
Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).
Yin, X., Liu, Z., Liu, D. & Ren, X. A Novel CNN-based Bi-LSTM parallel model with attention mechanism for human activity recognition with noisy data. Sci. Rep. 12, 7878 (2022).
Zhang, Q. et al. Data for “climate impacts and future trends of hailstorms in china based on millennial records”. Zenodo https://doi.org/10.5281/zenodo.15871682 (2025).
Zhang, Q. et al. Code for “Data for “climate impacts and future trends of hailstorms in china based on millennial records”. Zenodo https://doi.org/10.5281/zenodo.15871680 (2025).