Creech, S., Guidi, J. & Elburn, D. In 2022 ieee aerospace conference (aero). 1-7 (IEEE).
Smith, M. et al. In 2020 IEEE Aerospace Conference 1-10 (IEEE, 2020).
Gilliham, M. ARC Centre for Excellence in Plants for Space. Australian Research Council, https://plants4space.com (2024).
Australian Government, A. R. C. A. ARC Centre of Excellence in Plants for Space, https://www.arc.gov.au/funding-research/discovery-linkage/linkage-program/arc-centres-excellence/arc-centre-excellence-plants-space (2022).
Buckley, N. D. et al. Harnessing functional food strategies for the health challenges of space travel—Fermented soy for astronaut nutrition. Acta Astronaut. 68, 731–738 (2011).
Carter, K. et al. Dietary needs, approaches and recommendations to meet the demands of future manned space flights. Recent Prog. Nutr. 2, 1–19 (2022).
Tang, H., Rising, H. H., Majji, M. & Brown, R. D. Long-term space nutrition: a scoping review. Nutrients 14, 194 (2022).
De Micco, V. et al. Plant and microbial science and technology as cornerstones to Bioregenerative Life Support Systems in space. npj Microgravity 9, 69 (2023).
Mortimer, J. C. & Gilliham, M. SpaceHort: redesigning plants to support space exploration and on-earth sustainability. Curr. Opin. Biotechnol. 73, 246–252 (2022).
Bunchek, J. M. et al. Pick-and-eat space crop production flight testing on the International Space Station. J. Plant Interact. 19, 2292220 (2024).
Gonzalez Viejo, C., Harris, N. & Fuentes, S. Assessment of changes in sensory perception using biometrics and emotional response for space exploration by simulating microgravity positions. Food Res. Int. 175, 113827 (2024).
Verheyden, B., Liu, J., Beckers, F. & Aubert, A. E. Adaptation of heart rate and blood pressure to short and long duration space missions. Respir. Physiol. Neurobiol. 169, S13–S16 (2009).
Smith, S., Rice, B., Dlouhy, H. & Zwart, S. Assessment of nutritional intake during space flight and space flight analogs. Procedia Food Sci. 2, 27–34 (2013).
Smith, S. M. & Zwart, S. R. Nutritional biochemistry of spaceflight. Adv. Clin. Chem. 46, 87–130 (2008).
Schroeder, J. E. & Tuttle, M. L. Investigation of Possible Causes For Human-Performance Degradation During Microgravity Flight (NASA, 1992).
Taylor, A. J. et al. Factors affecting flavor perception in space: Does the spacecraft environment influence food intake by astronauts?. Compr. Rev. food Sci. food Saf. 19, 3439–3475 (2020).
NASA. Freeze-Dried Foods Nourish Adventurers and the Imagination, https://spinoff.nasa.gov/Spinoff2020/cg_2.html (2020).
Budylina, S., Khvatova, V. & Volozhin, A. Effect of orthostatic and antiorthostatic hypokinesia on taste sensitivity in men. Kosm. Biol. Aviakosmicheskaia Med. 10, 27–30 (1976).
Olabi, A., Lawless, H., Hunter, J., Levitsky, D. & Halpern, B. The effect of microgravity and space flight on the chemical senses. J. Food Sci. 67, 468–478 (2002).
Yakovleva, I. Electrometric investigation of human gustatory analyzer under normal conditions and in simulated weightlessness. Otorinolaringol 15-17 (1982).
Cromwell, R. L. et al. Overview of the NASA 70-day bed rest study. Med. Sci. sports Exerc. 50, 1909 (2018).
Lundström, J. N., Boyle, J. A. & Jones-Gotman, M. Sit up and smell the roses better: olfactory sensitivity to phenyl ethyl alcohol is dependent on body position. Chem. Sens. 31, 249–252 (2006).
Lundström, J. N., Boyle, J. A. & Jones-Gotman, M. Body position-dependent shift in odor percept present only for perithreshold odors. Chem. Sens. 33, 23–33 (2008).
Vickers, Z. M., Rice, B. L., Rose, M. S. & Lane, H. W. Simulated microgravity [bed rest] has little influence on taste, odor or trigeminal sensitivity. J. Sens. Stud. 16, 23–32 (2001).
Gonzalez Viejo, C., Harris, N., Tongson, E. & Fuentes, S. Exploring consumer acceptability of leafy greens in earth and space immersive environments using biometrics. npj Sci. Food 8, 81 (2024).
Lan, L. & Lian, Z. Application of statistical power analysis–How to determine the right sample size in human health, comfort and productivity research. Build. Environ. 45, 1202–1213 (2010).
Sawyer, S. F. Analysis of variance: the fundamental concepts. J. Man. Manipulat. Ther. 17, 27E–38E (2009).
Delarue, J., Brasset, A.-C., Jarrot, F. & Abiven, F. Taking control of product testing context thanks to a multi-sensory immersive room. A case study on alcohol-free beer. Food Qual. Preference 75, 78–86 (2019).
Gouton, M.-A., Dacremont, C., Trystram, G. & Blumenthal, D. Effect of perceptive enrichment on the efficiency of simulated contexts: comparing virtual reality and immersive room settings. Food Res. Int. 165, 112492 (2023).
Torrico, D. D. et al. Effects of context and virtual reality environments on the wine tasting experience, acceptability, and emotional responses of consumers. Foods 9, 191 (2020).
Rice, B., Vickers, Z., Rose, M. & Lane, H. in 67th Annual Scientific Meeting of the Aerospace Medical Association. 5-9.
Rozin, P. Taste-smell confusions” and the duality of the olfactory sense. Percept. Psychophys. 31, 397–401 (1982).
Wolf, B., Bakalis, S. & Chen, J. Oral Processing and Consumer Perception: Biophysics, Food Microstructures and Health. Royal Society of Chemistry, 113 (2022).
Lawless, H. Sensory combinations in the meal. Dimensions of the meal–the science, culture, business, and art of eating, 92-106 (2000).
Taylor, A., Mcgrane, S., Heer, M., Beauchamp, J. & Briand, L. Do space conditions change flavour perception and decrease food intake by astronauts? In Proceedings of the 16 Weurman Flavour Research Symposium, Dijon (France, 2021).
Heer, M. & Paloski, W. H. Space motion sickness: incidence, etiology, and countermeasures. Autonomic Neurosci. 129, 77–79 (2006).
Gonzalez Viejo, C., Tongson, E. & Fuentes, S. Integrating a low-cost electronic nose and machine learning modelling to assess coffee aroma profile and intensity. Sensors 21, 2016 (2021).
Mayer, F., Czerny, M. & Grosch, W. Sensory study of the character impact aroma compounds of a coffee beverage. Eur. Food Res. Technol. 211, 272–276 (2000).
Kumar, S. et al. Chemical composition of fresh leaves headspace aroma and essential oils of four Coriander cultivars. Front. Plant Sci. 13, 820644 (2022).
Staff, T. W. Why do astronauts crave spicy food?, https://theweek.com/articles/477770/why-astronauts-crave-spicy-food (2015).
Kloeris, V. Space Bites: Reflections of a NASA Food Scientist (Ballast Books, 2023).
Mednieks, M., Khatri, A., Rubenstein, R., Burleson, J. A. & Hand, A. R. Microgravity alters the expression of salivary proteins. Oral. Health Dent. Manag. 13, 211–216 (2014).
Deep, K., Jain, M. & Salhi, S. Logistics, Supply Chain and Financial Predictive Analytics: Theory and Practices (Springer, 2018).
Globig, L. K., Hartmann, M. & Martarelli, C. S. Vertical head movements influence memory performance for words with emotional content. Front. Psychol. 10, 672 (2019).
Ganchrow, J., Steiner, J. & Daher, M. Neonatal response to intensities facial expressions in different qualities and of gustatory stimuli. Infant Behav. Dev. 6, 189–200 (1983).
Robert Soussignan, J. W. & Schaaf, B. Epigenetic approach to the perinatal development of affective processes in normal and at-risk newborns. Adv. Psychol. Res. 40, 187 (2006).
Gonzalez Viejo, C., Fuentes, S., Howell, K., Torrico, D. & Dunshea, F. Integration of non-invasive biometrics with sensory analysis techniques to assess acceptability of beer by consumers. Physiol. Behav. 200, 139–147 (2019).
Riera, A., Soria-Frisch, A., Caparrini, M., Grau, C. & Ruffini, G. Unobtrusive biometric system based on electroencephalogram analysis. EURASIP J. Adv. Signal Process. 2008, 1–8 (2007).
Trevisani, M. et al. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat. Neurosci. 5, 546–551 (2002).
International Organization for Standardization ISO. Vol. ISO 8586-1: 1993E 15 (1993).
SVAGO. The History of the Zero Gravity Chair, https://www.svago.com/blogs/health-wellness/history-of-the-zero-gravity-chair (2020).
Fuentes, S., Gonzalez Viejo, C., Torrico, D. & Dunshea, F. Development of a biosensory computer application to assess physiological and emotional responses from sensory panelists. Sensors 18, 2958 (2018).
Gonzalez Viejo, C., Torrico, D., Dunshea, F. & Fuentes, S. Emerging technologies based on artificial intelligence to assess the quality and consumer preference of beverages. Beverages 5, 62 (2019).
Viola, P. & Jones, M. in Computer Vision and Pattern Recognition, 2001. CVPR 2001. In Proc. 2001 IEEE Computer Society Conference on. I-511-I-518 vol. 511 (IEEE, 2001).
Gonzalez Viejo, C., Zhang, H., Khamly, A., Xing, Y. & Fuentes, S. Coffee label assessment using sensory and biometric analysis of self-isolating panelists through videoconference. Beverages 7, 5 (2021).
Gonzalez Viejo, C. et al. Effects of different beer compounds on biometrically assessed emotional responses in consumers. Fermentation 9, 269 (2023).
Affectiva. The Science Behind Emotion AI. How It Works, https://www.affectiva.com/science-overview/ (2025).
Gonzalez Viejo, C., Fuentes, S., Torrico, D. & Dunshea, F. Non-contact heart rate and blood pressure estimations from video analysis and machine learning modelling applied to food sensory responses: a case study for chocolate. Sensors 18, 1802 (2018).
McAusland, L. et al. Growth spectrum complexity dictates aromatic intensity in coriander (Coriandrum sativum L.). Front. Plant Sci. 11, 462 (2020).
Sato, S., Sekine, Y., Kakumu, Y. & Hiramoto, T. Measurement of diallyl disulfide and allyl methyl sulfide emanating from human skin surface and influence of ingestion of grilled garlic. Sci. Rep. 10, 465 (2020).
Boughendjioua, H. Characterization of aroma active compounds of cumin (Cuminum cyminum, L.) seed essential oil. Mod. Appl. Bioequiv. Bioavailab. 4, 1–5 (2019).
Semmelroch, P., Laskawy, G., Blank, I. & Grosch, W. Determination of potent odourants in roasted coffee by stable isotope dilution assays. Flavour Fragr. J. 10, 1–7 (1995).
Melzner, J. et al. Comparison of the orthonasal and retronasal detection thresholds for carbon dioxide in humans. Chem. Sens. 36, 435–441 (2011).
Schneider, D., Seuss-Baum, I. & Schlich, E. Comparison of the group thresholds of capsaicin depending on the matrix. Ernährungs Umsch. Int. 10, 178–179 (2013).
Paissoni, M. A. et al. Mouthfeel subqualities in wines: a current insight on sensory descriptors and physical–chemical markers. Compr. Rev. food Sci. food Saf. 22, 3328–3365 (2023).
Troszyńska, A., Lamparski, G. & Kmita-Głażewska, H. Evaluation of astringency of preparations with different degree of tannin polymerisation. Pol. J. Food Nutr. Sci. 12, 4–86 (2003).
Valentova, H., Skrovankova, S., Panovska, Z. & Pokorny, J. Determination of astringent taste in model solutions and beverages. Czech J. Food Sci. 19, 196–200 (2001).