EUROPE SAYS
  • Europe
    • France
    • Germany
    • Netherlands
    • Belgium
    • Luxembourg
    • Switzerland
    • Austria
    • Denmark
    • Poland
    • Czech Republic
    • Slovakia
    • Slovenia
    • Croatia
  • ↓
    • Italy
    • Vatican
    • Spain
    • Portugal
  • ←
    • United Kingdom
    • Ireland
  • ↑
    • Iceland
    • Norway
    • Sweden
    • Finland
    • Estonia
    • Latvia
    • Lithuania
  • →
    • Russia
    • Belarus
    • Ukraine
    • Moldova
    • Hungary
    • Romania
    • Bulgaria
    • Greece
    • Cyprus
    • Türkiye
  • UK
  • FR
  • DE
  • IT
  • US
  • World
    • Canada
    • US
    • Japan
    • South Korea
    • Politics
    • Immigration
    • AI
    • Data
    • Environment
    • Energy
    • Nuclear
    • Crude Oil
    • Petroleum
    • Natural Gas
    • Space
    • Crypto
    • Business
    • Economy
  • Conflicts
    • NATO
    • Ukraine
    • Israel
    • Climate
    • Refugees
    • Asylum
    • Immigrant
    • Migrant

Categories

  • AI
  • Andorra
  • Asylum
  • Australia
  • Austria
  • Belarus
  • Belgium
  • Bulgaria
  • Business
  • Canada
  • Climate
  • Conflicts
  • Croatia
  • Crude Oil
  • Crypto
  • Cyprus
  • Czech Republic
  • Data
  • Denmark
  • Economy
  • Energy
  • Environment
  • Estonia
  • Europe
  • Finland
  • France
  • Germany
  • Greece
  • Hungary
  • Iceland
  • Immigrant
  • Immigration
  • Ireland
  • Israel
  • Italy
  • Japan
  • Latvia
  • Liechtenstein
  • Lithuania
  • Luxembourg
  • Malta
  • Markets
  • Migrant
  • Moldova
  • Monaco
  • NATO
  • Natural Gas
  • Netherlands
  • New Zealand
  • News
  • Norway
  • Nuclear
  • Olympics
  • Petroleum
  • Poland
  • Politics
  • Portugal
  • Refugees
  • Romania
  • Royal Families
  • Russia
  • San Marino
  • Slovakia
  • Slovenia
  • South Korea
  • Space
  • Spain
  • Sweden
  • Switzerland
  • Türkiye
  • Ukraine
  • United Kingdom
  • United States
  • Vatican
  • World
EUROPE SAYS
  • Europe
    • France
    • Germany
    • Netherlands
    • Belgium
    • Luxembourg
    • Switzerland
    • Austria
    • Denmark
    • Poland
    • Czech Republic
    • Slovakia
    • Slovenia
    • Croatia
  • ↓
    • Italy
    • Vatican
    • Spain
    • Portugal
  • ←
    • United Kingdom
    • Ireland
  • ↑
    • Iceland
    • Norway
    • Sweden
    • Finland
    • Estonia
    • Latvia
    • Lithuania
  • →
    • Russia
    • Belarus
    • Ukraine
    • Moldova
    • Hungary
    • Romania
    • Bulgaria
    • Greece
    • Cyprus
    • Türkiye
  • UK
  • FR
  • DE
  • IT
  • US
  • World
    • Canada
    • US
    • Japan
    • South Korea
    • Politics
    • Immigration
    • AI
    • Data
    • Environment
    • Energy
    • Nuclear
    • Crude Oil
    • Petroleum
    • Natural Gas
    • Space
    • Crypto
    • Business
    • Economy
  • Conflicts
    • NATO
    • Ukraine
    • Israel
    • Climate
    • Refugees
    • Asylum
    • Immigrant
    • Migrant
A circular economy approach for the global lithium-ion battery supply chain
EEconomy

A circular economy approach for the global lithium-ion battery supply chain

  • 22.10.2025

Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Three ways to improve net-zero emissions targets. Nature 591, 365–368 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Song, A., Dan, Z., Zheng, S. & Zhou, Y. An electricity-driven mobility circular economy with lifecycle carbon footprints for climate-adaptive carbon neutrality transformation. Nat. Commun. 15, 5905 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Peiseler, L. et al. Carbon footprint distributions of lithium-ion batteries and their materials. Nat. Commun. 15, 10301 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gutsch, M. & Leker, J. Costs, carbon footprint, and environmental impacts of lithium-ion batteries – from cathode active material synthesis to cell manufacturing and recycling. Appl. Energy 353, 122132 (2024).

Article 
CAS 

Google Scholar
 

Muratori, M. et al. The rise of electric vehicles—2020 status and future expectations. Prog. Energy 3, 22002 (2021).

Article 

Google Scholar
 

Maisel, F., Neef, C., Marscheider-Weidemann, F. & Nissen, N. F. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour. Conserv. Recycl. 192, 106920 (2023).

Article 
CAS 

Google Scholar
 

Sadeghi, G. Energy storage on demand: thermal energy storage development, materials, design, and integration challenges. Energy Storage Mater. 46, 192–222 (2022).

Article 

Google Scholar
 

Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Bistline, J. E. T. Roadmaps to net-zero emissions systems: emerging insights and modeling challenges. Joule 5, 2551–2563 (2021).

Article 

Google Scholar
 

Markard, J. The next phase of the energy transition and its implications for research and policy. Nat. Energy 3, 628–633 (2018).

Article 
ADS 

Google Scholar
 

Carley, S. & Konisky, D. M. The justice and equity implications of the clean energy transition. Nat. Energy 5, 569–577 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Grey, C. P. & Hall, D. S. Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun. 11, 6279 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Whittingham, M. S. Lithium batteries: 50 years of advances to address the next 20 years of climate issues. Nano Lett. 20, 8435–8437 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kalair, A., Abas, N., Saleem, M. S., Kalair, A. R. & Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 3, e135 (2021).

Article 

Google Scholar
 

Ma, R. et al. Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions. Nat. Commun. 15, 7641 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gervillié-Mouravieff, C., Bao, W., Steingart, D. A. & Meng, Y. S. Non-destructive characterization techniques for battery performance and life-cycle assessment. Nat. Rev. Electr. Eng. 1, 547–558 (2024).

Article 

Google Scholar
 

Kim, H. C., Lee, S. & Wallington, T. J. Cradle-to-gate and use-phase carbon footprint of a commercial plug-in hybrid electric vehicle lithium-ion battery. Environ. Sci. Technol. 57, 11834–11842 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Hossain, M. H., Chowdhury, M. A., Hossain, N., Islam, M. A. & Mobarak, M. H. Advances of lithium-ion batteries anode materials—a review. Chem. Eng. J. Adv. 16, 100569 (2023).

Article 

Google Scholar
 

Zhu, J. et al. A method to prolong lithium-ion battery life during the full life cycle. Cell Rep. Phys. Sci. 4, 101464 (2023).

Article 
CAS 

Google Scholar
 

Arshad, F. et al. Life cycle assessment of lithium-ion batteries: a critical review. Resour. Conserv. Recycl. 180, 106164 (2022).

Article 
CAS 

Google Scholar
 

Liu, Z., Deng, Z., Davis, S. J., Giron, C. & Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 3, 217–219 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

Article 

Google Scholar
 

Liu, Z., Deng, Z., Davis, S. & Ciais, P. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 4, 205–206 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Nielsen, K. S. et al. Underestimation of personal carbon footprint inequality in four diverse countries. Nat. Clim. Change 14, 1136–1143 (2024).

Article 
ADS 

Google Scholar
 

Bruckner, B., Hubacek, K., Shan, Y., Zhong, H. & Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5, 311–320 (2022).

Article 

Google Scholar
 

Zhang, Z. et al. Embodied carbon emissions in the supply chains of multinational enterprises. Nat. Clim. Change 10, 1096–1101 (2020).

Article 
ADS 

Google Scholar
 

Chancel, L. Global carbon inequality over 1990–2019. Nat. Sustain. 5, 931–938 (2022).

Article 

Google Scholar
 

Hua, Y. et al. Toward sustainable reuse of retired lithium-ion batteries from electric vehicles. Resour. Conserv. Recycl. 168, 105249 (2021).

Article 

Google Scholar
 

Melin, H. E. et al. Global implications of the EU battery regulation. Science 373, 384–387 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sun, X., Liu, Z., Zhao, F. & Hao, H. Global competition in the lithium-ion battery supply chain: a novel perspective for criticality analysis. Environ. Sci. Technol. 55, 12180–12190 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Porzio, J. & Scown, C. D. Life‐cycle assessment considerations for batteries and battery materials. Adv. Energy Mater. 11, 2100771 (2021).

Article 
CAS 

Google Scholar
 

Dunn, J., Slattery, M., Kendall, A., Ambrose, H. & Shen, S. Circularity of lithium-ion battery materials in electric vehicles. Environ. Sci. Technol. 55, 5189–5198 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Murdock, B. E., Toghill, K. E. & Tapia‐Ruiz, N. A perspective on the sustainability of cathode materials used in lithium‐ion batteries. Adv. Energy Mater. 11, 2102028 (2021).

Article 
CAS 

Google Scholar
 

Bird, R., Baum, Z. J., Yu, X. & Ma, J. The regulatory environment for lithium-ion battery recycling. ACS Energy Lett. 7, 736–740 (2022).

Article 
CAS 

Google Scholar
 

Trost, J. N. & Dunn, J. B. Assessing the feasibility of the Inflation Reduction Act’s EV critical mineral targets. Nat. Sustain. 6, 639–643 (2023).

Article 

Google Scholar
 

Llamas-Orozco, J. A. et al. Estimating the environmental impacts of global lithium-ion battery supply chain: a temporal, geographical, and technological perspective. PNAS Nexus 2, pgad361 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kelly, J. C., Wang, M., Dai, Q. & Winjobi, O. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries. Resour. Conserv. Recycl. 174, 105762 (2021).

Article 
CAS 

Google Scholar
 

Chen, Q. et al. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. J. Clean. Prod. 369, 133342 (2022).

Article 
CAS 

Google Scholar
 

Duffner, F., Wentker, M., Greenwood, M. & Leker, J. Battery cost modeling: a review and directions for future research. Renew. Sustain. Energy Rev. 127, 109872 (2020).

Article 

Google Scholar
 

Andersson, Ö. & Börjesson, P. The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: life cycle assessment and policy implications. Appl. Energy 289, 116621 (2021).

Article 
CAS 

Google Scholar
 

Bashmakov, I. A. et al. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 11 (Cambridge Univ. Press, 2022).

Geissdoerfer, M., Savaget, P., Bocken, N. M. P. & Hultink, E. J. The Circular Economy–a new sustainability paradigm? J. Clean. Prod. 143, 757–768 (2017).

Article 

Google Scholar
 

Dai, M. et al. Country-specific net-zero strategies of the pulp and paper industry. Nature 626, 327–334 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zeng, A. et al. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nat. Commun. 13, 1341 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dunn, J. B., Gaines, L., Kelly, J. C., James, C. & Gallagher, K. G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ. Sci. 8, 158–168 (2015).

Article 
CAS 

Google Scholar
 

International Energy Agency. Critical Minerals Market Review 2023 (OECD Publishing, 2023).

Duarte, R., Langarita, R. & Sánchez-Chóliz, J. The electricity industry in Spain: a structural analysis using a disaggregated input-output model. Energy 141, 2640–2651 (2017).

Article 

Google Scholar
 

Lenzen, M. Aggregation versus disaggregation in input–output analysis of the environment. Econ. Syst. Res. 23, 73–89 (2011).

Article 

Google Scholar
 

Narayanan, B. G., Hertel, T. W. & Horridge, J. M. Disaggregated data and trade policy analysis: the value of linking partial and general equilibrium models. Econ. Model. 27, 755–766 (2010).

Article 

Google Scholar
 

Peters, J. C. The GTAP-power data base: disaggregating the electricity sector in the GTAP data base. J. Glob. Econ. Anal. 1, 209–250 (2016).


Google Scholar
 

Zhai, M., Huang, G., Li, J., Pan, X. & Su, S. Development of a distributive Three Gorges Project input-output model to investigate the disaggregated sectoral effects of Three Gorges Project. Sci. Total Environ. 797, 148817 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Sun, C., Khan, A., Liu, Y. & Lei, N. An analysis of the impact of fiscal and monetary policy fluctuations on the disaggregated level renewable energy generation in the G7 countries. Renew. Energy 189, 1154–1165 (2022).

Article 

Google Scholar
 

Islam, M. M., Sohag, K., Hammoudeh, S., Mariev, O. & Samargandi, N. Minerals import demands and clean energy transitions: a disaggregated analysis. Energy Econ. 113, 106205 (2022).

Article 

Google Scholar
 

Ahmed, Z., Cary, M. & Le, H. P. Accounting asymmetries in the long-run nexus between globalization and environmental sustainability in the United States: an aggregated and disaggregated investigation. Environ. Impact Assess. Rev. 86, 106511 (2021).

Article 

Google Scholar
 

Wang, J. et al. Inspecting non-linear behavior of aggregated and disaggregated renewable and non-renewable energy consumption on GDP per capita in Pakistan. Energy Strategy Rev. 39, 100772 (2022).

Article 

Google Scholar
 

Field, E. H. et al. The USGS 2023 conterminous US time‐independent earthquake rupture forecast. Bull. Seismol. Soc. Am. 114, 523–571 (2024).

Article 

Google Scholar
 

UN Comtrade. International trade statistics. United Nations (2023).

Aguiar, A., Chepeliev, M., Corong, E. L., McDougall, R. & van der Mensbrugghe, D. The GTAP data base: version 10. J. Glob. Econ. Anal 4, 1–27 (2019).


Google Scholar
 

Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi‐regional input‐output tables. J. Ind. Ecol. 22, 502–515 (2018).

Article 

Google Scholar
 

Hiramatsu, T., Inoue, H. & Kato, Y. Estimation of interregional input–output table using hybrid algorithm of the RAS method and real-coded genetic algorithm. Transp. Res. E Logist. Transp. Rev. 95, 385–402 (2016).

Article 

Google Scholar
 

Parikh, A. Forecasts of input-output matrices using the RAS method. Rev. Econ. Stat. 61, 477–481 (1979).

Article 

Google Scholar
 

Rodrigues, R. & Linares, P. Electricity load level detail in computational general equilibrium – Part I – data and calibration. Energy Econ. 46, 258–266 (2014).

Article 

Google Scholar
 

Wang, S. et al. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation. Energy 254, 124224 (2022).

Article 

Google Scholar
 

Majeau-Bettez, G., Hawkins, T. R. & Strømman, A. H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45, 4548–4554 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mohr, M., Peters, J. F., Baumann, M. & Weil, M. Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes. J. Ind. Ecol. 24, 1310–1322 (2020).

Article 
CAS 

Google Scholar
 

Pradhan, B. K. & Ghosh, J. A computable general equilibrium (CGE) assessment of technological progress and carbon pricing in India’s green energy transition via furthering its renewable capacity. Energy Econ. 106, 105788 (2022).

Article 

Google Scholar
 

Lofgren, H., Harris, R. L. & Robinson, S. A Standard Computable General Equilibrium (CGE) Model in GAMS (International Food Policy Research Institute, 2002).

Zhang, X., Qi, T., Ou, X. & Zhang, X. The role of multi-region integrated emissions trading scheme: a computable general equilibrium analysis. Appl. Energy 185, 1860–1868 (2017).

Article 
ADS 

Google Scholar
 

Babatunde, K. A., Begum, R. A. & Said, F. F. Application of computable general equilibrium (CGE) to climate change mitigation policy: a systematic review. Renew. Sustain. Energy Rev. 78, 61–71 (2017).

Article 

Google Scholar
 

Guo, Z., Zhang, X., Zheng, Y. & Rao, R. Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors. Energy Econ. 45, 455–462 (2014).

Article 

Google Scholar
 

Qi, S., Cheng, S., Tan, X., Feng, S. & Zhou, Q. Predicting China’s carbon price based on a multi-scale integrated model. Appl. Energy 324, 119784 (2022).

Article 

Google Scholar
 

Fujimori, S., Oshiro, K., Shiraki, H. & Hasegawa, T. Energy transformation cost for the Japanese mid-century strategy. Nat. Commun. 10, 4737 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Combes, P.-P., Duranton, G. & Gobillon, L. The production function for housing: evidence from France. J. Political Econ. 129, 2766–2816 (2021).

Article 

Google Scholar
 

Mayer, J., Dugan, A., Bachner, G. & Steininger, K. W. Is carbon pricing regressive? Insights from a recursive-dynamic CGE analysis with heterogeneous households for Austria. Energy Econ. 104, 105661 (2021).

Article 

Google Scholar
 

Su, Q. et al. Water–energy–carbon nexus: greenhouse gas emissions from integrated urban drainage systems in China. Environ. Sci. Technol. 57, 2093–2104 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 16, 073005 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Lei, T. et al. Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature 622, 514–520 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jones, M. W. et al. Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018. Sci. Data 8, 2 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fleischmann, J. et al. Battery 2030: resilient, sustainable, and circular. McKinsey & Company https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-and-circular (2023).

Liang, J. et al. Agricultural HANPP embodied in consumption: tracing pressure on ecosystems based on an MRIO analysis. Environ. Sci. Technol. 57, 13838–13850 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Xing, Z., Jiao, Z. & Wang, H. Carbon footprint and embodied carbon transfer at city level: a nested MRIO analysis of Central Plain urban agglomeration in China. Sustain. Cities Soc. 83, 103977 (2022).

Article 

Google Scholar
 

Zhai, M. A circular economy approach for decarbonizing the lithium-ion battery supply chain [data set]. Zenodo https://doi.org/10.5281/zenodo.14841891 (2025).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn https://ggplot2.tidyverse.org (Springer, 2016).

Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R https://r-spatial.org/book/ (Chapman and Hall/CRC, 2023).

Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: draw geographical maps. R package version 3.4.3 https://CRAN.R-project.org/package=maps (2025).

Pedersen, T. patchwork: the composer of plots. R package version 1.3.2.9000 https://github.com/thomasp85/patchwork (2025).

Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Massicotte, P. & South, A. rnaturalearth: world map data from Natural Earth. R package version 1.1.0.9000 https://docs.ropensci.org/rnaturalearth/ (2025).

Hijmans, R. geosphere: spherical trigonometry. R package version 1.5-20 https://github.com/rspatial/geosphere (2024).

Slowikowski, K. ggrepel: automatically position non-overlapping text labels with ‘ggplot2’. R package version 0.9.6.9999 https://github.com/slowkow/ggrepel (2025).

Zhai, M. A circular economy approach for decarbonizing the lithium-ion battery supply chain. Zenodo https://doi.org/10.5281/zenodo.14671353 (2025).

  • Tags:
  • climate change policy
  • Economy
  • Environmental Economics
  • Environmental social sciences
  • Humanities and Social Sciences
  • multidisciplinary
  • science
EUROPE SAYS
www.europesays.com