Lee D. S. et al. Uncertainties in mitigating aviation non-CO2 emissions for climate and air quality using hydrocarbon fuels. Environ. Sci. Atmos. 3, 1693–1740 (2023).

Lee, D. S. et al. Transport impacts on atmosphere and climate: aviation. Atmos. Environ. 44, 4678–4734 (2010).

CAS 

Google Scholar
 

Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 244, 29 (2021).


Google Scholar
 

Teoh, R. et al. Global aviation contrail climate effects from 2019 to 2021. Atmos. Chem. Phys. 24, 6071–6093 (2024).

CAS 

Google Scholar
 

Zhang, W. Y. et al. Impact of host climate model on contrail cirrus effective radiative forcing estimates. Atmos. Chem. Phys. 25, 473–489 (2025).

CAS 

Google Scholar
 

Bickel, M. et al. Contrail cirrus climate impact: from radiative forcing to surface temperature change. J. Clim. 38, 1895–1912 (2025).


Google Scholar
 

Singh, D. K., Sanyal, S. & Wuebbles, D. J. Understanding the role of contrails and contrail cirrus in climate change: a global perspective. Atmos. Chem. Phys. 24, 9219–9262 (2024).

CAS 

Google Scholar
 

Bier, A. & Burkhardt, U. Impact of parametrizing microphysical processes in the jet and vortex phase on contrail cirrus properties and radiative forcing. J. Geophys Res. Atmos. 127, 29 (2022).


Google Scholar
 

Burkhardt, U., Kaercher, B. & Schumann, U. global modeling of the contrail and contrail cirrus climate impact. Bull. Am. Meteorol. Soc. 91, 479 (2010).


Google Scholar
 

Burkhardt, U. & Kärcher, B. Global radiative forcing from contrail cirrus. Nature 1, 54–58 (2011).


Google Scholar
 

Verma, P. & Burkhardt, U. Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation. Atmos. Chem. Phys. 22, 8819–8842 (2022).

CAS 

Google Scholar
 

Gierens, K. Selected topics on the interaction between cirrus clouds and embedded contrails. Atmos. Chem. Phys. 12, 11943–11949 (2012).

CAS 

Google Scholar
 

Bedka, S. T., Minnis, P., Duda, D. P., Chee, T. L. & Palikonda, R. Properties of linear contrails in the Northern Hemisphere derived from 2006 Aqua MODIS observations. Geophys Res. Lett. 40, 772–777 (2013).


Google Scholar
 

Spangenberg, D. A. et al. Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data. Geophys Res. Lett. 40, 595–600 (2013).


Google Scholar
 

Tesche M., Achtert P., Glantz P., Noone K. J. Aviation effects on already-existing cirrus clouds. Nat. Commun. 7, 12016 (2016).

Marjani, S., Tesche, M., Bräuer, P., Sourdeval, O. & Quaas, J. Satellite observations of the impact of individual aircraft on ice crystal number in thin cirrus clouds. Geophys Res Lett. 49, 9 (2022).


Google Scholar
 

Schumann U. On conidtions for contrail formation from aircraft exhausts. Meteorol Z N.F.5, 4-23 (1996).

Jensen, E. J. et al. Environmental conditions required for contrail formation and persistence. J. Geophys. Res. Atmos. 103, 3929–3936 (1998).


Google Scholar
 

Gierens, K. & Vazquez-Navarro, M. Statistical analysis of contrail lifetimes from a satellite perspective. Meteorol. Z. 27, 183–193 (2018).


Google Scholar
 

Krämer, M. et al. Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys. 9, 3505–3522 (2009).


Google Scholar
 

Krämer, M. et al. A microphysics guide to cirrus clouds—part 1: cirrus types. Atmos. Chem. Phys. 16, 3463–3483 (2016).


Google Scholar
 

Kärcher, B. Formation and radiative forcing of contrail cirrus. Nat. Commun. 9, 17 (2018).


Google Scholar
 

Krämer, M. et al. A microphysics guide to cirrus—part 2: climatologies of clouds and humidity from observations. Atmos. Chem. Phys. 20, 12569–12608 (2020).


Google Scholar
 

Wilhelm, L., Gierens, K. & Rohs, S. Meteorological conditions that promote persistent contrails. Appl. Sci. 12, 14 (2022).


Google Scholar
 

Kübbeler, M. et al. Thin and subvisible cirrus and contrails in a subsaturated environment. Atmos. Chem. Phys. 11, 5853–5865 (2011).


Google Scholar
 

Li, Y. et al. Upper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus. Atmos. Chem. Phys. 23, 2251–2271 (2023).

CAS 

Google Scholar
 

Gierens, K., Schumann, U., Helten, M., Smit, H. & Marenco, A. A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements. Ann. Geophys. 17, 1218–1226 (1999).

CAS 

Google Scholar
 

Jensen, E. J. et al. Prevalence of ice-supersaturated regions in the upper troposphere: implications for optically thin ice cloud formation. J. Geophys. Res. Atmos. 106, 17253–17266 (2001).


Google Scholar
 

Spichtinger, P., Gierens, K., Smit, H. G. J., Ovarlez, J. & Gayet, J. F. On the distribution of relative humidity in cirrus clouds. Atmos. Chem. Phys. 4, 639–647 (2004).

CAS 

Google Scholar
 

Petzold, A. et al. Ice-supersaturated air masses in the northern mid-latitudes from regular in situ observations by passenger aircraft: vertical distribution, seasonality and tropospheric fingerprint. Atmos. Chem. Phys. 20, 8157–8179 (2020).

CAS 

Google Scholar
 

Gierens, K., Matthes, S. & Rohs, S. How well can persistent contrails be predicted? Aerospace 7, 169 (2020).


Google Scholar
 

Spichtinger P., Leschner M. Horizontal scales of ice-supersaturated regions. Tellus B 68, 29020 (2016).

Gierens, K. & Brinkop, S. Dynamical characteristics of ice supersaturated regions. Atmos. Chem. Phys. 12, 11933–11942 (2012).

CAS 

Google Scholar
 

Wilhelm, L., Gierens, K. & Rohs, S. Weather variability induced uncertainty of contrail radiative forcing. Aerospace 8, 332 (2021).


Google Scholar
 

Reutter, P., Neis, P., Rohs, S. & Sauvage, B. Ice supersaturated regions: properties and validation of ERA-Interim reanalysis with IAGOS in situ water vapour measurements. Atmos. Chem. Phys. 20, 787–804 (2020).

CAS 

Google Scholar
 

Hofer, S., Gierens, K. & Rohs, S. How well can persistent contrails be predicted? An update. Atmos. Chem. Phys. 24, 7911–7925 (2024).

CAS 

Google Scholar
 

Teoh, R. et al. Aviation contrail climate effects in the North Atlantic from 2016 to 2021. Atmos. Chem. Phys. 22, 10919–10935 (2022).

CAS 

Google Scholar
 

Wolf, K., Bellouin, N., Boucher, O., Rohs, S. & Li, Y. Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis. Atmos. Chem. Phys. 25, 157–181 (2025).

CAS 

Google Scholar
 

Tompkins, A. M., Gierens, K. & Radel, G. Ice supersaturation in the ECMWF integrated forecast system. Q J. R. Meteorol. Soc. 133, 53–63 (2007).


Google Scholar
 

Grewe, V. et al. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects. Nat. Commun. 12, 3841 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Teoh, R., Schumann, U., Majumdar, A. & Stettler, M. E. J. Mitigating the climate forcing of aircraft contrails by small-scale diversions and technology adoption. Environ. Sci. Technol. 54, 2941–2950 (2020).

CAS 
PubMed 

Google Scholar
 

Sausen, R. et al. Can we successfully avoid persistent contrails by small altitude adjustments of flights in the real world?. Meteorol. Z. 33, 83–98 (2023).


Google Scholar
 

Borella, A. et al. The importance of an informed choice of CO2 -equivalence metrics for contrail avoidance. Atmos. Chem. Phys. 24, 9401–9417 (2024).

CAS 

Google Scholar
 

Prather M. J., Gettelman A., Penner J. E. Trade-offs in aviation impacts on climate favour non-CO2 mitigation. Nature 8, 988-993 (2025).

Irvine, E. A. & Shine, K. P. Ice supersaturation and the potential for contrail formation in a changing climate. Earth Syst. Dynam 6, 555–568 (2015).


Google Scholar
 

IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021).

Petzold, A. et al. Global-scale atmosphere monitoring by in-service aircraft—current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus B 67, 28452 (2015).


Google Scholar
 

WMO Meteorology – a three-dimensipnal science. WMO Bull. 6, 134–138 (1957).


Google Scholar
 

Petzold, A. et al. Upper tropospheric water vapour and its interaction with cirrus clouds as seen from IAGOS long-term routine in situ observations. Faraday Discuss 200, 229–249 (2017).

CAS 
PubMed 

Google Scholar
 

Spichtinger, P., Gierens, K., Leiterer, U. & Dier, H. Ice supersaturation in the tropopause region over Lindenberg, Germany. Meteorol. Z. 12, 143–156 (2003).


Google Scholar
 

Wolf, K., Bellouin, N. & Boucher, O. Long-term upper-troposphere climatology of potential contrail occurrence over the Paris area derived from radiosonde observations. Atmos. Chem. Phys. 23, 287–309 (2023).

CAS 

Google Scholar
 

Sassen, K. & Cho, B. S. Subvisual thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteorol. 31, 1275–1285 (1992).


Google Scholar
 

Kärcher, B. Properties of subvisible cirrus clouds formed by homogeneous freezing. Atmos. Chem. Phys. 2, 161–170 (2002).


Google Scholar
 

Sun-Mack, S., Minnis, P., Chen, Y., Hong, G. & Smith, W. L. Jr Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network. Atmos. Meas. Tech. 17, 3323–3346 (2024).


Google Scholar
 

Dekoutsidis, G., Gross, S., Wirth, M., Krämer, M. & Rolf, C. Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air. Atmos. Chem. Phys. 23, 3103–3117 (2023).

CAS 

Google Scholar
 

Diao, M. et al. Cloud-scale ice-supersaturated regions spatially correlate with high water vapor heterogeneities. Atmos. Chem. Phys. 14, 2639–2656 (2014).


Google Scholar
 

Vázquez-Navarro, M., Mannstein, H. & Kox, S. Contrail life cycle and properties from 1 year of MSG/SEVIRI rapid-scan images. Atmos. Chem. Phys. 15, 8739–8749 (2015).


Google Scholar
 

Wernli, H., Boettcher, M., Joos, H., Miltenberger, A. K. & Spichtinger, P. A trajectory-based classification of ERA-Interim ice clouds in the region of the North Atlantic storm track. Geophys. Res. Lett. 43, 6657–6664 (2016).


Google Scholar
 

Rolf, C. et al. Evaluation of compact hygrometers for continuous airborne measurements. Meteorol. Z. 33, 15–34 (2024).


Google Scholar
 

Hersbach, H. et al. The ERA5 global reanalysis. Q J. R. Meteorol. Soc. 146, 1999–2049 (2020).


Google Scholar
 

Lauer, A., Bock, L., Hassler, B., Schröeder, M. & Stengel, M. Cloud climatologies from global climate models-a comparison of CMIP5 and CMIP6 models with satellite data. J. Clim. 36, 281–311 (2023).


Google Scholar
 

Wang, Z. M. et al. Machine learning for improvement of upper-tropospheric relative humidity in ERA5 weather model data. Atmos. Chem. Phys. 25, 2845–2861 (2025).

CAS 

Google Scholar
 

Afchine, A. et al. Ice particle sampling from aircraft – influence of the probing position on the ice water content. Atmos. Meas. Tech. 11, 4015–4031 (2018).

CAS 

Google Scholar
 

Luebke, A. E. et al. The origin of midlatitude ice clouds and the resulting influence on their microphysical properties. Atmos. Chem. Phys. 16, 5793–5809 (2016).

CAS 

Google Scholar
 

Fu, Q. A. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Clim. 9, 2058–2082 (1996).


Google Scholar
 

Gayet, J. F. et al. Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment. J. Geophys. Res. 109, D20206 (2004).


Google Scholar
 

Gierens, K. M. Numerical simulations of persistent contrails. J. Atmos. Sci. 53, 3333–3348 (1996).


Google Scholar
 

Schiller, C., Krämer, M., Afchine, A., Spelten, N. & Sitnikov, N. Ice water content of Arctic, midlatitude, and tropical cirrus. J. Geophys. Res. Atmos. 113, 12 (2008).


Google Scholar
 

Schröder, F. et al. On the transition of contrails into cirrus clouds. J. Atmos. Sci. 57, 464–480 (2000).


Google Scholar
 

Krämer M., Spelten N., Rolf C., & Spang R. A microphysics guide to cirrus—part 3: occurrence patterns of cloud particles. Atmos. Chem. Phys. 25, 13563-13583 (2025).