Lee D. S. et al. Uncertainties in mitigating aviation non-CO2 emissions for climate and air quality using hydrocarbon fuels. Environ. Sci. Atmos. 3, 1693–1740 (2023).
Lee, D. S. et al. Transport impacts on atmosphere and climate: aviation. Atmos. Environ. 44, 4678–4734 (2010).
Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 244, 29 (2021).
Teoh, R. et al. Global aviation contrail climate effects from 2019 to 2021. Atmos. Chem. Phys. 24, 6071–6093 (2024).
Zhang, W. Y. et al. Impact of host climate model on contrail cirrus effective radiative forcing estimates. Atmos. Chem. Phys. 25, 473–489 (2025).
Bickel, M. et al. Contrail cirrus climate impact: from radiative forcing to surface temperature change. J. Clim. 38, 1895–1912 (2025).
Singh, D. K., Sanyal, S. & Wuebbles, D. J. Understanding the role of contrails and contrail cirrus in climate change: a global perspective. Atmos. Chem. Phys. 24, 9219–9262 (2024).
Bier, A. & Burkhardt, U. Impact of parametrizing microphysical processes in the jet and vortex phase on contrail cirrus properties and radiative forcing. J. Geophys Res. Atmos. 127, 29 (2022).
Burkhardt, U., Kaercher, B. & Schumann, U. global modeling of the contrail and contrail cirrus climate impact. Bull. Am. Meteorol. Soc. 91, 479 (2010).
Burkhardt, U. & Kärcher, B. Global radiative forcing from contrail cirrus. Nature 1, 54–58 (2011).
Verma, P. & Burkhardt, U. Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation. Atmos. Chem. Phys. 22, 8819–8842 (2022).
Gierens, K. Selected topics on the interaction between cirrus clouds and embedded contrails. Atmos. Chem. Phys. 12, 11943–11949 (2012).
Bedka, S. T., Minnis, P., Duda, D. P., Chee, T. L. & Palikonda, R. Properties of linear contrails in the Northern Hemisphere derived from 2006 Aqua MODIS observations. Geophys Res. Lett. 40, 772–777 (2013).
Spangenberg, D. A. et al. Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data. Geophys Res. Lett. 40, 595–600 (2013).
Tesche M., Achtert P., Glantz P., Noone K. J. Aviation effects on already-existing cirrus clouds. Nat. Commun. 7, 12016 (2016).
Marjani, S., Tesche, M., Bräuer, P., Sourdeval, O. & Quaas, J. Satellite observations of the impact of individual aircraft on ice crystal number in thin cirrus clouds. Geophys Res Lett. 49, 9 (2022).
Schumann U. On conidtions for contrail formation from aircraft exhausts. Meteorol Z N.F.5, 4-23 (1996).
Jensen, E. J. et al. Environmental conditions required for contrail formation and persistence. J. Geophys. Res. Atmos. 103, 3929–3936 (1998).
Gierens, K. & Vazquez-Navarro, M. Statistical analysis of contrail lifetimes from a satellite perspective. Meteorol. Z. 27, 183–193 (2018).
Krämer, M. et al. Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys. 9, 3505–3522 (2009).
Krämer, M. et al. A microphysics guide to cirrus clouds—part 1: cirrus types. Atmos. Chem. Phys. 16, 3463–3483 (2016).
Kärcher, B. Formation and radiative forcing of contrail cirrus. Nat. Commun. 9, 17 (2018).
Krämer, M. et al. A microphysics guide to cirrus—part 2: climatologies of clouds and humidity from observations. Atmos. Chem. Phys. 20, 12569–12608 (2020).
Wilhelm, L., Gierens, K. & Rohs, S. Meteorological conditions that promote persistent contrails. Appl. Sci. 12, 14 (2022).
Kübbeler, M. et al. Thin and subvisible cirrus and contrails in a subsaturated environment. Atmos. Chem. Phys. 11, 5853–5865 (2011).
Li, Y. et al. Upper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus. Atmos. Chem. Phys. 23, 2251–2271 (2023).
Gierens, K., Schumann, U., Helten, M., Smit, H. & Marenco, A. A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements. Ann. Geophys. 17, 1218–1226 (1999).
Jensen, E. J. et al. Prevalence of ice-supersaturated regions in the upper troposphere: implications for optically thin ice cloud formation. J. Geophys. Res. Atmos. 106, 17253–17266 (2001).
Spichtinger, P., Gierens, K., Smit, H. G. J., Ovarlez, J. & Gayet, J. F. On the distribution of relative humidity in cirrus clouds. Atmos. Chem. Phys. 4, 639–647 (2004).
Petzold, A. et al. Ice-supersaturated air masses in the northern mid-latitudes from regular in situ observations by passenger aircraft: vertical distribution, seasonality and tropospheric fingerprint. Atmos. Chem. Phys. 20, 8157–8179 (2020).
Gierens, K., Matthes, S. & Rohs, S. How well can persistent contrails be predicted? Aerospace 7, 169 (2020).
Spichtinger P., Leschner M. Horizontal scales of ice-supersaturated regions. Tellus B 68, 29020 (2016).
Gierens, K. & Brinkop, S. Dynamical characteristics of ice supersaturated regions. Atmos. Chem. Phys. 12, 11933–11942 (2012).
Wilhelm, L., Gierens, K. & Rohs, S. Weather variability induced uncertainty of contrail radiative forcing. Aerospace 8, 332 (2021).
Reutter, P., Neis, P., Rohs, S. & Sauvage, B. Ice supersaturated regions: properties and validation of ERA-Interim reanalysis with IAGOS in situ water vapour measurements. Atmos. Chem. Phys. 20, 787–804 (2020).
Hofer, S., Gierens, K. & Rohs, S. How well can persistent contrails be predicted? An update. Atmos. Chem. Phys. 24, 7911–7925 (2024).
Teoh, R. et al. Aviation contrail climate effects in the North Atlantic from 2016 to 2021. Atmos. Chem. Phys. 22, 10919–10935 (2022).
Wolf, K., Bellouin, N., Boucher, O., Rohs, S. & Li, Y. Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis. Atmos. Chem. Phys. 25, 157–181 (2025).
Tompkins, A. M., Gierens, K. & Radel, G. Ice supersaturation in the ECMWF integrated forecast system. Q J. R. Meteorol. Soc. 133, 53–63 (2007).
Grewe, V. et al. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects. Nat. Commun. 12, 3841 (2021).
Teoh, R., Schumann, U., Majumdar, A. & Stettler, M. E. J. Mitigating the climate forcing of aircraft contrails by small-scale diversions and technology adoption. Environ. Sci. Technol. 54, 2941–2950 (2020).
Sausen, R. et al. Can we successfully avoid persistent contrails by small altitude adjustments of flights in the real world?. Meteorol. Z. 33, 83–98 (2023).
Borella, A. et al. The importance of an informed choice of CO2 -equivalence metrics for contrail avoidance. Atmos. Chem. Phys. 24, 9401–9417 (2024).
Prather M. J., Gettelman A., Penner J. E. Trade-offs in aviation impacts on climate favour non-CO2 mitigation. Nature 8, 988-993 (2025).
Irvine, E. A. & Shine, K. P. Ice supersaturation and the potential for contrail formation in a changing climate. Earth Syst. Dynam 6, 555–568 (2015).
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021).
Petzold, A. et al. Global-scale atmosphere monitoring by in-service aircraft—current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus B 67, 28452 (2015).
WMO Meteorology – a three-dimensipnal science. WMO Bull. 6, 134–138 (1957).
Petzold, A. et al. Upper tropospheric water vapour and its interaction with cirrus clouds as seen from IAGOS long-term routine in situ observations. Faraday Discuss 200, 229–249 (2017).
Spichtinger, P., Gierens, K., Leiterer, U. & Dier, H. Ice supersaturation in the tropopause region over Lindenberg, Germany. Meteorol. Z. 12, 143–156 (2003).
Wolf, K., Bellouin, N. & Boucher, O. Long-term upper-troposphere climatology of potential contrail occurrence over the Paris area derived from radiosonde observations. Atmos. Chem. Phys. 23, 287–309 (2023).
Sassen, K. & Cho, B. S. Subvisual thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteorol. 31, 1275–1285 (1992).
Kärcher, B. Properties of subvisible cirrus clouds formed by homogeneous freezing. Atmos. Chem. Phys. 2, 161–170 (2002).
Sun-Mack, S., Minnis, P., Chen, Y., Hong, G. & Smith, W. L. Jr Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network. Atmos. Meas. Tech. 17, 3323–3346 (2024).
Dekoutsidis, G., Gross, S., Wirth, M., Krämer, M. & Rolf, C. Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air. Atmos. Chem. Phys. 23, 3103–3117 (2023).
Diao, M. et al. Cloud-scale ice-supersaturated regions spatially correlate with high water vapor heterogeneities. Atmos. Chem. Phys. 14, 2639–2656 (2014).
Vázquez-Navarro, M., Mannstein, H. & Kox, S. Contrail life cycle and properties from 1 year of MSG/SEVIRI rapid-scan images. Atmos. Chem. Phys. 15, 8739–8749 (2015).
Wernli, H., Boettcher, M., Joos, H., Miltenberger, A. K. & Spichtinger, P. A trajectory-based classification of ERA-Interim ice clouds in the region of the North Atlantic storm track. Geophys. Res. Lett. 43, 6657–6664 (2016).
Rolf, C. et al. Evaluation of compact hygrometers for continuous airborne measurements. Meteorol. Z. 33, 15–34 (2024).
Hersbach, H. et al. The ERA5 global reanalysis. Q J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Lauer, A., Bock, L., Hassler, B., Schröeder, M. & Stengel, M. Cloud climatologies from global climate models-a comparison of CMIP5 and CMIP6 models with satellite data. J. Clim. 36, 281–311 (2023).
Wang, Z. M. et al. Machine learning for improvement of upper-tropospheric relative humidity in ERA5 weather model data. Atmos. Chem. Phys. 25, 2845–2861 (2025).
Afchine, A. et al. Ice particle sampling from aircraft – influence of the probing position on the ice water content. Atmos. Meas. Tech. 11, 4015–4031 (2018).
Luebke, A. E. et al. The origin of midlatitude ice clouds and the resulting influence on their microphysical properties. Atmos. Chem. Phys. 16, 5793–5809 (2016).
Fu, Q. A. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Clim. 9, 2058–2082 (1996).
Gayet, J. F. et al. Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment. J. Geophys. Res. 109, D20206 (2004).
Gierens, K. M. Numerical simulations of persistent contrails. J. Atmos. Sci. 53, 3333–3348 (1996).
Schiller, C., Krämer, M., Afchine, A., Spelten, N. & Sitnikov, N. Ice water content of Arctic, midlatitude, and tropical cirrus. J. Geophys. Res. Atmos. 113, 12 (2008).
Schröder, F. et al. On the transition of contrails into cirrus clouds. J. Atmos. Sci. 57, 464–480 (2000).
Krämer M., Spelten N., Rolf C., & Spang R. A microphysics guide to cirrus—part 3: occurrence patterns of cloud particles. Atmos. Chem. Phys. 25, 13563-13583 (2025).