Alpher, R. A., Bethe, H. & Gamow, G. The origin of chemical elements. Phys. Rev. 73, 803–804 (1948).

Article 

Google Scholar
 

Merrill, P. Technetium in the stars. Science 115, 484 (1952).


Google Scholar
 

Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).

Article 

Google Scholar
 

Cameron, A. G. W. Nuclear reactions in stars and nucleogenesis. Publ. Astron. Soc. Pac. 69, 201–222 (1957).

Article 

Google Scholar
 

Käppeler, F., Gallino, R., Bisterzo, S. & Aoki, W. The s process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83, 157–193 (2011).

Article 

Google Scholar
 

Arnould, M., Goriely, S. & Takahashi, K. The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450, 97–213 (2007).

Article 

Google Scholar
 

Horowitz, C. J. et al. r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G 46, 083001 (2019).

Article 

Google Scholar
 

Cowan, J. J. et al. Origin of the heaviest elements: the rapid neutron-capture process. Rev. Mod. Phys. 93, 015002 (2021).

Article 

Google Scholar
 

Arnould, M. & Goriely, S. The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status. Phys. Rep. 384, 1–84 (2003).

Article 

Google Scholar
 

Rauscher, T. et al. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys. 76, 066201 (2013).

Article 

Google Scholar
 

Cowan, J. J. & Rose, W. K. Production of 14C and neutrons in red giants. Astrophys. J. 212, 149–158 (1977).

Article 

Google Scholar
 

Malaney, R. A. Neutron synthesis in AGB and post-AGB stars of low mass. Mon. Not R. Astron. Soc. 223, 683–707 (1986).

Article 

Google Scholar
 

Jorissen, A. & Arnould, M. Proton mixing in He-rich layers. Astron. Astrophys. 221, 161–176 (1989).


Google Scholar
 

Herwig, F. Evolution of asymptotic giant branch stars. Annu. Rev. Astron. Astrophys. 43, 435–479 (2005).

Article 

Google Scholar
 

Werner, K. & Herwig, F. The elemental abundances in bare planetary nebula central stars and the shell burning in AGB stars. Publ. Astron. Soc. Pacif. 118, 183–204 (2006).

Article 

Google Scholar
 

Iwamoto, N., Kajino, T., Mathews, G., Fujimoto, M. & Aoki, W. Flash-driven convective mixing in low-mass, metal-deficient asymptotic giant branch stars: a new paradigm for lithium enrichment and a possible s-process. Astrophys. J. 602, 377–387 (2004).

Article 

Google Scholar
 

Cristallo, S. et al. Asymptotic-giant-branch models at very low metallicity. Proc. Astron. Soc. Aust. 26, 139–144 (2009).

Article 

Google Scholar
 

Dardelet, L. et al. i process and CEMP-s+r stars. In XIII Nuclei in the Cosmos (NIC XIII), 145 (2014).

Hampel, M., Stancliffe, R. J., Lugaro, M. & Meyer, B. S. The s-process in the Nd–Sm region: constraints from i-process models and CEMP-r/s stars. Astrophys. J. 831, 171 (2016).

Article 

Google Scholar
 

Beers, T. C. & Christlieb, N. The discovery and analysis of very metal-poor stars in the Galaxy. Annu. Rev. Astron. Astrophys. 43, 531–580 (2005).

Article 

Google Scholar
 

Aoki, W., Norris, J. E., Ryan, S. G., Beers, T. C. & Ando, H. Subaru/HDS study of the extremely metal-poor star CS 29498-043: abundance analysis details and comparison with other carbon-rich objects. Publ. Astron. Soc. Jpn 54, 933–949 (2002).

Article 

Google Scholar
 

Johnson, J. A. & Bolte, M. The systematic behavior of the s- and r-process elements in very metal-poor stars. Astrophys. J. 605, 462–471 (2004).

Article 

Google Scholar
 

Jonsell, K. et al. The Hamburg/ESO r-process enhanced star survey (HERES)-III. HE0338-3945 and the formation of the r-and r/s-stars. Astron. Astrophys. 451, 651–670 (2006).

Article 

Google Scholar
 

Bisterzo, S., Gallino, R., Straniero, O., Cristallo, S. & Käppeler, F. The s-process in low-metallicity stars — III. Individual analysis of CEMP-s and CEMP-s/r with asymptotic giant branch models. Mon. Not. R. Astron. Soc. 422, 849–884 (2012).

Article 

Google Scholar
 

Asplund, M., Lambert, D. L., Kipper, T., Pollacco, D. & Shetrone, M. D. The rapid evolution of the born-again giant Sakurai’s object. Astron. Astrophys. 343, 507–518 (1999).


Google Scholar
 

Herwig, F. et al. Convective-reactive proton-12C combustion in Sakurai’s object (V4334 Sagittarii) and implications for the evolution and yields from the first generations of stars. Astrophys. J. 727, 89 (2011).

Article 

Google Scholar
 

Fujiya, W., Hoppe, P., Zinner, E., Pignatari, M. & Herwig, F. Evidence for radiogenic sulfur-32 in Type AB presolar silicon carbide grains? Astrophys. J. 776, L29 (2013).

Article 

Google Scholar
 

Liu, N. et al. Isotopic records in AGB stars from the Torino postprocess AGB model. Astrophys. J. 786, 66 (2014).

Article 

Google Scholar
 

Lugaro, M. et al. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars. Astron. Astrophys. 583, A77 (2015).

Article 

Google Scholar
 

Cseh, B. et al. Barium stars as tracers of s-process nucleosynthesis in AGB stars. I. 28 stars with independently derived AGB mass. Astron. Astrophys. 661, A77 (2022).


Google Scholar
 

den Hartogh, J. W. et al. Barium stars as tracers of s-process nucleosynthesis in AGB stars. II. Using machine learning techniques on 169 stars. Astron. Astrophys. 672, A143 (2023).

Article 

Google Scholar
 

Világos, B. et al. Barium stars as tracers of s-process nucleosynthesis in AGB stars. III. Systematic deviations from the AGB models. Astron. Astrophys. 688, A164 (2024).

Article 

Google Scholar
 

Roriz, M. P. et al. Tungsten in barium stars. Mon. Not. R. Astron. Soc. 528, 4354–4363 (2024).

Article 

Google Scholar
 

Dorsch, M. et al. Heavy-metal enrichment of intermediate He-sdOB stars: the pulsators Feige 46 and LS IV-14°116 revisited. Astron. Astrophys. 643, A22 (2020).

Article 

Google Scholar
 

Battich, T., Miller Bertolami, M. M., Serenelli, A. M., Justham, S. & Weiss, A. A self-synthesized origin for heavy metals in hot subdwarf stars. Astron. Astrophys. 680, L13 (2023).

Article 

Google Scholar
 

Mishenina, T. et al. Abundances of neutron-capture elements in stars of the Galactic disk substructures. Mon. Not. R. Astron. Soc. 446, 3651–3668 (2015).

Article 

Google Scholar
 

Bertolli, M. G., Herwig, F., Pignatari, M. & Kawano, T. Systematic and correlated nuclear uncertainties in the i-process at the neutron shell closure N = 82. Preprint at https://arXiv.org/abs/1310.4578 (2013).

Spyrou, A. et al. First study of the 139Ba(n, γ)140Ba reaction to constrain the conditions for the astrophysical i process. Phys. Rev. Lett. 132, 202701 (2024).

Article 

Google Scholar
 

Keller, S. C. et al. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3. Nature 506, 463–466 (2014).

Article 

Google Scholar
 

Clarkson, O., Herwig, F. & Pignatari, M. Nucleosynthesis in the first stars studied with a new, accurate neutron capture rate for 13C(α,n)16O. Mon. Not. R. Astron. Soc. 474, L37–L41 (2018).

Article 

Google Scholar
 

McKay, J. E., Denissenkov, P. A., Herwig, F., Perdikakis, G. & Schatz, H. The impact of (n,γ) reaction rate uncertainties on the predicted abundances of i-process elements with 32 ≤ Z ≤ 48 in the metal-poor star HD94028. Mon. Not. R. Astron. Soc. 491, 5179–5187 (2019).

Article 

Google Scholar
 

Alencastro Puls, A. et al. Chemical evolution of r-process elements in stars (CERES): IV. An observational run-up of the third r-process peak with Hf, Os, Ir, and Pt. Astron. Astrophys. 693, A294 (2025).

Article 

Google Scholar
 

Côté, B. et al. Neutron star mergers might not be the only source of r-process elements in the Milky Way. Astrophys. J. 875, 106 (2019).

Article 

Google Scholar
 

Masseron, T. et al. A holistic approach to carbon-enhanced metal-poor stars. Astron. Astrophys. 509, A93 (2010).

Article 

Google Scholar
 

Hansen, C. J. et al. Abundances and kinematics of carbon-enhanced metal-poor stars in the Galactic halo. A new classification scheme based on Sr and Ba. Astron. Astrophys. 623, A128 (2019).

Article 

Google Scholar
 

Karinkuzhi, D. et al. Low-mass low-metallicity AGB stars as an efficient i-process site explaining CEMP-rs stars. Astron. Astrophys. 645, A61 (2021).

Article 

Google Scholar
 

Hansen, T. T. et al. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars — CEMP-s stars. Astron. Astrophys. 588, A3 (2016).

Article 

Google Scholar
 

Vassh, N. et al. Classifying metal-poor stars with machine learning using nucleosynthesis calculations. Preprint at https://arxiv.org/abs/2505.14563 (2025).

Mashonkina, L. & Christlieb, N. The Hamburg/ESO r-process Enhanced Star survey (HERES). IX. Constraining pure r-process Ba/Eu abundance ratio from observations of r-II stars. Astron. Astrophys. 565, A123 (2014).

Article 

Google Scholar
 

Magain, P. & Zhao, G. Barium isotopes in the very metal-poor star HD 140283. Astron. Astrophys. 268, L27 (1993).


Google Scholar
 

Lambert, D. L. & Allende Prieto, C. The isotopic mixture of barium in the metal-poor subgiant HD 140283. Mon. Not. R. Astron. Soc. 335, 325–334 (2002).

Article 

Google Scholar
 

Gallagher, A. J., Ludwig, H. G., Ryan, S. G. & Aoki, W. A three-dimensional hydrodynamical line profile analysis of iron lines and barium isotopes in HD 140283. Astron. Astrophys. 579, A94 (2015).

Article 

Google Scholar
 

Van Eck, S. et al. From the s-process to the i-process: a new perspective on the chemical enrichment of extrinsic stars. Galaxies 12, 89 (2024).

Article 

Google Scholar
 

Mashonkina, L. I. & Belyaev, A. K. Even-to-odd barium isotope ratio in selected galactic halo stars. Astron. Lett. 45, 341–353 (2019).

Article 

Google Scholar
 

Gallagher, A. J. et al. Observational constraints on the origin of the elements. II. 3D non-LTE formation of Ba II lines in the solar atmosphere. Astron. Astrophys. 634, A55 (2020).

Article 

Google Scholar
 

Bergemann, M., Lind, K., Collet, R., Magic, Z. & Asplund, M. Non-LTE line formation of Fe in late-type stars — I. Standard stars with 1D and 〈3D〉 model atmospheres. Mon. Not. R. Astron. Soc. 427, 27–49 (2012).

Article 

Google Scholar
 

Lind, K. & Amarsi, A. M. Three-dimensional nonlocal thermodynamic equilibrium abundance analyses of late-type stars. Annu. Rev. Astron. Astrophys. 62, 475–527 (2024).

Article 

Google Scholar
 

Jofré, P., Heiter, U. & Soubiran, C. Accuracy and precision of industrial stellar abundances. Annu. Rev. Astron. Astrophys. 57, 571–616 (2019).

Article 

Google Scholar
 

Buder, S. et al. The GALAH+ survey: third data release. Mon. Not. R. Astron. Soc. 506, 150–201 (2021).

Article 

Google Scholar
 

Abdurro’uf. et al. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 data. Astrophys. J. Suppl. Ser. 259, 35 (2022).

Article 

Google Scholar
 

de Jong, R. S. et al. 4MOST: Project overview and information for the first call for proposals. The Messenger 175, 3–11 (2019).


Google Scholar
 

Jin, S. et al. The wide-field, multiplexed, spectroscopic facility WEAVE: survey design, overview, and simulated implementation. Mon. Not. R. Astron. Soc. 530, 2688–2730 (2024).

Article 

Google Scholar
 

Nissen, P. E. & Gustafsson, B. High-precision stellar abundances of the elements: methods and applications. Astron. Astrophys. Rev. 26, 6 (2018).

Article 

Google Scholar
 

Herwig, F., Blöcker, T., Langer, N. & Driebe, T. On the formation of hydrogen-deficient post-AGB stars. Astron. Astrophys. 349, L5–L8 (1999).


Google Scholar
 

Choplin, A., Siess, L. & Goriely, S. The intermediate neutron capture process III. The i-process in AGB stars of different masses and metallicities without overshoot. Astron. Astrophys. 667, A155 (2022).

Article 

Google Scholar
 

Herwig, F., Woodward, P. R., Lin, P.-H., Knox, M. & Fryer, C. Global non-spherical oscillations in three-dimensional 4π simulations of the H-ingestion flash. Astrophys. J. Lett. 792, L3 (2014).

Article 

Google Scholar
 

Hampel, M., Karakas, A. I., Stancliffe, R. J., Meyer, B. S. & Lugaro, M. Learning about the intermediate neutron-capture process from lead abundances. Astrophys. J. 887, 11 (2019).

Article 

Google Scholar
 

Denissenkov, P. A., Herwig, F., Perdikakis, G. & Schatz, H. The impact of (n,γ) reaction rate uncertainties of unstable isotopes on the i-process nucleosynthesis of the elements from Ba to W. Mon. Not. R. Astron. Soc. 503, 3913–3925 (2021).

Article 

Google Scholar
 

Choplin, A., Goriely, S. & Siess, L. Synthesis of thorium and uranium in asymptotic giant branch stars. Astron. Astrophys. 667, L13 (2022).

Article 

Google Scholar
 

Choplin, A., Siess, L., Goriely, S. & Martinet, S. The intermediate neutron capture process V. The i-process in AGB stars with overshoot. Astron. Astrophys. 684, A206 (2024).

Article 

Google Scholar
 

Denissenkov, P. A. et al. I-process nucleosynthesis and mass retention efficiency in he-shell flash evolution of rapidly accreting white dwarfs. Astrophys. J. Lett. 834, L10 (2017).

Article 

Google Scholar
 

Denissenkov, P. A. et al. The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations. Mon. Not. R. Astron. Soc. 488, 4258–4270 (2019).

Article 

Google Scholar
 

Stephens, D. et al. 3D1D hydro-nucleosynthesis simulations — I. Advective-reactive post-processing method and its application to H ingestion into He-shell flash convection in rapidly accreting white dwarfs. Mon. Not. R. Astron. Soc. 504, 744–760 (2021).

Article 

Google Scholar
 

Fujimoto, M. Y., Ikeda, Y. & Iben Jr, I. The origin of extremely metal-poor carbon stars and the search for population III. Astrophys. J. Lett. 529, L25–L28 (2000).

Article 

Google Scholar
 

Chieffi, A., Dominguez, I., Limongi, M. & Staniero, O. Evolution and nucleosynthesis of zero-metal intermediate-mass stars. Astrophys. J. 553, 1159–1174 (2001).

Article 

Google Scholar
 

Siess, L., Livio, M. & Lattanzio, J. Structure, evolution, and nucleosynthesis of primordial stars. Astrophys. J. 570, 329–343 (2002).

Article 

Google Scholar
 

Suda, T. & Fujimoto, M. Y. Evolution of low- and intermediate-mass stars with [Fe/H] Mon. Not. R. Astron. Soc. 405, 177–193 (2010).


Google Scholar
 

Cristallo, S., Karinkuzhi, D., Goswami, A., Piersanti, L. & Gobrecht, D. Constraints of the physics of low-mass AGB stars from CH and CEMP Stars. Astrophys. J. 833, 181 (2016).

Article 

Google Scholar
 

Choplin, A., Siess, L. & Goriely, S. The intermediate neutron capture process I. Development of the i-process in low-metallicity low-mass AGB stars. Astron. Astrophys. 648, A119 (2021).

Article 

Google Scholar
 

Denissenkov, P. et al. The impact of (n,γ) reaction rate uncertainties of unstable isotopes near N = 50 on the i-process nucleosynthesis in He-shell flash white dwarfs. J. Phys. G 45, 055203 (2018).

Article 

Google Scholar
 

Schlattl, H., Cassisi, S., Salaris, M. & Weiss, A. On the helium flash in low-mass population III red giant stars. Astrophys. J. 559, 1082–1093 (2001).

Article 

Google Scholar
 

Campbell, S. W., Lugaro, M. & Karakas, A. I. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. II. s-process nucleosynthesis during the core He flash. Astron. Astrophys. 522, L6 (2010).

Article 

Google Scholar
 

Cruz, M. A., Serenelli, A. & Weiss, A. s-process in extremely metal-poor, low-mass stars. Astron. Astrophys. 559, A4 (2013).

Article 

Google Scholar
 

Jones, S. et al. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis. Mon. Not. R. Astron. Soc. 455, 3848–3863 (2016).

Article 

Google Scholar
 

Siess, L. Evolution of massive AGB stars. II. Model properties at non-solar metallicity and the fate of super-AGB stars. Astron. Astrophys. 476, 893–909 (2007).

Article 

Google Scholar
 

Banerjee, P., Qian, Y.-Z. & Heger, A. New neutron-capture site in massive Pop III and Pop II stars as a source for heavy elements in the early Galaxy. Astrophys. J. 865, 120 (2018).

Article 

Google Scholar
 

Clarkson, O., Herwig, F. & Pignatari, M. Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars. Mon. Not. R. Astron. Soc. 474, L37–L41 (2018).

Article 

Google Scholar
 

Clarkson, O. & Herwig, F. Convective H-He interactions in massive Population III stellar evolution models. Mon. Not. R. Astron. Soc. 500, 2685–2703 (2021).

Article 

Google Scholar
 

Goriely, S., Siess, L. & Choplin, A. The intermediate neutron capture process II. Nuclear uncertainties. Astron. Astrophys. 654, A129 (2021).

Article 

Google Scholar
 

Martinet, S., Choplin, A., Goriely, S. & Siess, L. The intermediate neutron capture process IV. Impact of nuclear model and parameter uncertainties. Astron. Astrophys. 684, A8 (2024).

Article 

Google Scholar
 

Hauser, W. & Feshbach, H. The inelastic scattering of neutrons. Phys. Rev. 87, 366–373 (1952).

Article 

Google Scholar
 

Bartholomew, G. A., Earle, E. D., Ferguson, A. J., Knowles, J. W. & Lone, M. A.Gamma-Ray Strength Functions, 229–324 (Springer, 1973).

Wiedeking, M. & Goriely, S. Photon strength functions and nuclear level densities: invaluable input for nucleosynthesis. Phil. Trans. R. Soc. A 382, 20230125 (2024).

Article 

Google Scholar
 

Capote, R. et al. Reference Input Parameter Library (RIPL-3). Nucl. Data Sheets 110, 3107–3214 (2009).

Article 

Google Scholar
 

Bethe, H. An attempt to calculate the number of energy levels of a heavy nucleus. Phys. Rev. 50, 332–341 (1936).

Article 

Google Scholar
 

Ericson, T. A statistical analysis of excited nuclear states. Nucl. Phys. 11, 481–491 (1959).

Article 

Google Scholar
 

Gilbert, A. & Cameron, A. G. W. A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446–1496 (1965).

Article 

Google Scholar
 

Demetriou, P. & Goriely, S. Microscopic nuclear level densities for practical applications. Nucl. Phys. A 695, 95–108 (2001).

Article 

Google Scholar
 

Goriely, S., Hilaire, S. & Koning, A. J. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications. Astron. Astrophys. 487, 767–774 (2008).

Article 

Google Scholar
 

Hilaire, S., Girod, M., Goriely, S. & Koning, A. J. Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012).

Article 

Google Scholar
 

Døssing, T. & Aberg, S. Collective enhancements in nuclear level densities. Eur. Phys. J. A 55, 249 (2019).

Article 

Google Scholar
 

Zelevinsky, V. & Karampagia, S. Nuclear level density and related physics. EPJ Web Conf. 194, 01001 (2018).

Article 

Google Scholar
 

Alhassid, Y. The shell model Monte Carlo approach to level densities: recent developments and perspectives. Eur. Phys. J. A 51, 171 (2015).

Article 

Google Scholar
 

Wang, J., Dutta, S., Wang, L.-J. & Sun, Y. Projected shell model description of nuclear level density: collective, pair-breaking, and multiquasiparticle regimes in even–even nuclei. Phys. Rev. C 108, 034309 (2023).

Article 

Google Scholar
 

Hilaire, S., Goriely, S., Péru, S. & Gosselin, G. A new approach to nuclear level densities: the QRPA plus boson expansion. Phys. Lett. B 843, 137989 (2023).

Article 

Google Scholar
 

Kadmenskii, S., Markushev, V. & Furmann, V. Radiative strength functions and the problem of enhanced radiative capture in the region of superfluid nuclei. Sov. J. Nucl. Phys. 37, 165–168 (1983).


Google Scholar
 

Mercenne, A., Fanto, P., Ryssens, W. & Alhassid, Y. Magnetic dipole γ-ray strength functions in the crossover from spherical to deformed neodymium isotopes. Phys. Rev. C 110, 054313 (2024).

Article 

Google Scholar
 

Chen, F.-Q., Niu, Y. F., Sun, Y. & Wiedeking, M. Origin of the low-energy enhancement of the γ-ray strength function. Phys. Rev. Lett. 134, 082502 (2025).

Article 

Google Scholar
 

Goriely, S. et al. Reference database for photon strength functions. Eur. Phys. J. A 55, 172 (2019).

Article 

Google Scholar
 

Daoutidis, I. & Goriely, S. Large-scale continuum random-phase approximation predictions of dipole strength for astrophysical applications. Phys. Rev. C 86, 034328 (2012).

Article 

Google Scholar
 

Egorova, I. A. & Litvinova, E. Electric dipole response of neutron-rich calcium isotopes in relativistic quasiparticle time blocking approximation. Phys. Rev. C 94, 034322 (2016).

Article 

Google Scholar
 

Voinov, A. et al. Large enhancement of radiative strength for soft transitions in the quasicontinuum. Phys. Rev. Lett. 93, 142504 (2004).

Article 

Google Scholar
 

Wiedeking, M. et al. Low-energy enhancement in the photon strength of 95Mo. Phys. Rev. Lett. 108, 162503 (2012).

Article 

Google Scholar
 

Larsen, A. C. et al. Low-energy enhancement and fluctuations of γ-ray strength functions in 56,57Fe: test of the Brink–Axel hypothesis. J. Phys. G 44, 064005 (2017).

Article 

Google Scholar
 

Jones, M. D. et al. Examination of the low-energy enhancement of the γ-ray strength function of 56Fe. Phys. Rev. C 97, 024327 (2018).

Article 

Google Scholar
 

Litvinova, E. & Belov, N. Low-energy limit of the radiative dipole strength in nuclei. Phys. Rev. C 88, 031302(R) (2013).

Article 

Google Scholar
 

Schwengner, R., Frauendorf, S. & Larsen, A. C. Low-energy enhancement of magnetic dipole radiation. Phys. Rev. Lett. 111, 232504 (2013).

Article 

Google Scholar
 

Schwengner, R., Frauendorf, S. & Brown, B. A. Low-energy magnetic dipole radiation in open-shell nuclei. Phys. Rev. Lett. 118, 092502 (2017).

Article 

Google Scholar
 

Frauendorf, S. & Schwengner, R. Evolution of low-lying M1 modes in germanium isotopes. Phys. Rev. C 105, 034335 (2022).

Article 

Google Scholar
 

Goriely, S., Hilaire, S., Péru, S. & Sieja, K. Gogny-HFB+QRPA dipole strength function and its application to radiative nucleon capture cross section. Phys. Rev. C 98, 014327 (2018).

Article 

Google Scholar
 

Cramer, J. D. & Britt, H. C. Neutron fission cross sections for 231Th, 233Th, 235U, 237U, 239U, 241Pu, and 243Pu from 0.5 to 2.25 MeV using (t, pf) reactions. Nucl. Sci. Eng. 41, 177–187 (1970).

Article 

Google Scholar
 

Escher, J. E. et al. Compound-nuclear reaction cross sections from surrogate measurements. Rev. Mod. Phys. 84, 353–397 (2012).

Article 

Google Scholar
 

Wilson, J. N. et al. Indirect (n,γ) cross sections of thorium cycle nuclei using the surrogate method. Phys. Rev. C 85, 034607 (2012).

Article 

Google Scholar
 

Potel, G., Nunes, F. M. & Thompson, I. J. Establishing a theory for deuteron-induced surrogate reactions. Phys. Rev. C 92, 034611 (2015).

Article 

Google Scholar
 

Ducasse, Q. et al. Investigation of the 238U(d,p) surrogate reaction via the simultaneous measurement of γ-decay and fission probabilities. Phys. Rev. C 94, 024614 (2016).

Article 

Google Scholar
 

Escher, J. E. et al. Constraining neutron capture cross sections for unstable nuclei with surrogate reaction data and theory. Phys. Rev. Lett. 121, 052501 (2018).

Article 

Google Scholar
 

Ratkiewicz, A. et al. Towards neutron capture on exotic nuclei: demonstrating (d,pγ) as a surrogate reaction for (n,γ). Phys. Rev. Lett. 122, 052502 (2019).

Article 

Google Scholar
 

Escher, J. E. The surrogate nuclear reaction method: concept, recent advances, and new opportunities. EPJ Web Conf. 322, 03001 (2025).

Article 

Google Scholar
 

Sguazzin, M. et al. First measurement of the neutron-emission probability with a surrogate reaction in inverse kinematics at a heavy-ion storage ring. Phys. Rev. Lett. 134, 072501 (2025).

Article 

Google Scholar
 

Allmond, J. M. et al. Relative 235U(n,γ) and (n,f) cross sections from 235U(d,pγ) and (d,pf). Phys. Rev. C 79, 054610 (2009).

Article 

Google Scholar
 

Hatarik, R. et al. Benchmarking a surrogate reaction for neutron capture. Phys. Rev. C 81, 011602 (2010).

Article 

Google Scholar
 

Yan, S. Q. et al. Examination of the surrogate ratio method for the determination of the 93Zr (n,γ) 94Zr cross section with 90,92Zr (18O,16O)92,94Zr reactions. Phys. Rev. C 94, 015804 (2016).

Article 

Google Scholar
 

Yan, S. Q. et al. The 95Zr(n,γ)96Zr cross section from the surrogate ratio method and its effect on s-process nucleosynthesis. Astrophys. J. 848, 98 (2017).

Article 

Google Scholar
 

Yan, S. Q. et al. The 59Fe(n,γ)60Fe cross section from the surrogate ratio method and its effect on the 60Fe nucleosynthesis. Astrophys. J. 919, 84 (2021).

Article 

Google Scholar
 

Rekstad, J. et al. A study of nuclear structure at high energy and low spin. Phys. Scr. T5, 45–50 (1983).

Article 

Google Scholar
 

Bergholt, L., Guttormsen, M., Rekstad, J. & Tveter, T. On the relation between the statistical gamma-decay and the level density in 162Dy. Nucl. Phys. A 589, 249–266 (1995).

Article 

Google Scholar
 

Tveter, T. S., Bergholt, L., Guttormsen, M., Melby, E. & Rekstad, J. Observation of fine structure in nuclear level densities and γ-ray strength functions. Phys. Rev. Lett. 77, 2404 (1996).

Article 

Google Scholar
 

Schiller, A. et al. Extraction of level density and gamma strength function from primary gamma spectra. Nucl. Instrum. Methods Phys. Res. A 447, 498–511 (2000).

Article 

Google Scholar
 

Markova, M. et al. Nuclear level densities and γ-ray strength functions of 111, 112, 113SN isotopes studied with the Oslo method. Phys. Rev. C 108, 014315 (2023).

Article 

Google Scholar
 

Guttormsen, M., Tveter, T., Bergholt, L., Ingebretsen, F. & Rekstad, J. The unfolding of continuum gamma-ray spectra. Nucl. Instrum. Methods Phys. Res. A 374, 371–376 (1996).

Article 

Google Scholar
 

Guttormsen, M., Ramsøy, T. & Rekstad, J. The first generation of gamma-rays from hot nuclei. Nucl. Instrum. Methods Phys. Res. A 255, 518–523 (1987).

Article 

Google Scholar
 

Brink, D. M. Some Aspects of the Interaction of Light with Matter. PhD thesis, Oxford Univ. (1955).

Axel, P. Electric dipole ground-state transition. Phys. Rev. 126, 671–683 (1962).

Article 

Google Scholar
 

Pogliano, F. et al. Indirect measurement of the (n,γ)127Sb cross section. Phys. Rev. C 106, 015804 (2022).

Article 

Google Scholar
 

Ingeberg, V. W. et al. First application of the Oslo method in inverse kinematics. Eur. Phys. J. A 56, 68 (2020).

Article 

Google Scholar
 

Ingeberg, V. W. et al. Nuclear level density and γ-ray strength function of 67Ni and the impact on the i process. Phys. Rev. C 111, 015803 (2025).

Article 

Google Scholar
 

Spyrou, A. et al. Novel technique for constraining r-process (n,γ) reaction rates. Phys. Rev. Lett. 113, 232502 (2014).

Article 

Google Scholar
 

Liddick, S. et al. Experimental neutron capture rate constraint far from stability. Phys. Rev. Lett. 116, 242502 (2016).

Article 

Google Scholar
 

Liddick, S. N. et al. Benchmarking the extraction of statistical neutron capture cross sections on short-lived nuclei for applications using the β-Oslo method. Phys. Rev. C 100, 024624 (2019).

Article 

Google Scholar
 

Wiedeking, M. et al. Independent normalization for γ-ray strength functions: the shape method. Phys. Rev. C 104, 014311 (2021).

Article 

Google Scholar
 

Mücher, D. et al. Extracting model-independent nuclear level densities away from stability. Phys. Rev. C 107, L011602 (2023).

Article 

Google Scholar
 

Sweet, A. et al. Nuclear level density and γ-decay strength of 93Sr. Phys. Rev. C 109, 054305 (2024).

Article 

Google Scholar
 

Klein, M. J. Principle of detailed balance. Phys. Rev. 97, 1446 (1955).

Article 
MathSciNet 

Google Scholar
 

Rossi, D. M. et al. Measurement of the dipole polarizability of the unstable neutron-rich nucleus 68Ni. Phys. Rev. Lett. 111, 242503 (2013).

Article 

Google Scholar
 

Wieland, O. et al. Low-lying dipole response in the unstable 70Ni nucleus. Phys. Rev. C 98, 064313 (2018).

Article 

Google Scholar
 

Adrich, P. et al. Evidence for pygmy and giant dipole resonances in 130Sn and 130Sn. Phys. Rev. Lett. 95, 132501 (2005).

Article 

Google Scholar
 

Ershova, O. et al. Coulomb dissociation reactions on Mo isotopes for astrophysics applications. In Proc. 11th Symposium on Nuclei in the Cosmos (NIC XI), vol. 100, 232 (PoS, 2011).

Takeuchi, S. et al. Coulomb breakup reactions of 93,94Zr in inverse kinematics. Prog. Theor. Exp. Phys. 2019, 013D02 (2019).

Article 

Google Scholar
 

Avigo, R. et al. Low-lying electric dipole γ-continuum for the unstable 62,64Fe nuclei: strength evolution with neutron number. Phys. Lett. B 811, 135951 (2020).

Article 

Google Scholar
 

Vonach, H. Extraction of level density information from non-resonance reactions. In Proc. IAEA Advisory Group Meeting on Basic and Applied Problems of Nuclear Level Densities (ed. Bhat, M. R.). BNL Report No. BNL-NCS-51694, 247–290 (Brookhaven National Laboratory, 1983).

Voinov, A. V. et al. Reduction of the neutron imaginary potential off the stability line and its possible impact on neutron capture rates. Phys. Rev. C 104, 015805 (2021).

Article 

Google Scholar
 

Soltesz, D. et al. Determination of the 60Zn level density from neutron evaporation spectra. Phys. Rev. C 103, 015802 (2021).

Article 

Google Scholar
 

Voinov, A. V. et al. Level densities for 69,71Ga nuclei using a particle-evaporation technique. Phys. Rev. C 109, 054601 (2024).

Article 

Google Scholar
 

Gull, M. et al. The R-Process Alliance: discovery of the first metal-poor star with a combined r- and s-process element signature. Astrophys. J. 862, 174 (2018).

Article 

Google Scholar
 

Meyer, B. S., Clayton, D. D. & The, L.-S. Molybdenum and zirconium isotopes from a supernova neutron burst. Astrophys. J. 540, L49–L52 (2000).

Article 

Google Scholar
 

Roederer, I. U., Karakas, A. I., Pignatari, M. & Herwig, F. The diverse origins of neutron-capture elements in the metal-poor star HD 94028: possible detection of products of i-process nucleosynthesis. Astrophys. J. 821, 37 (2016).

Article 

Google Scholar
 

The first meteorite identified on another planet by NASA’s Mars Exploration Rover Opportunity. https://www.nasa.gov/image-article/mars-meteorite/ (2005).

The Hubble Space Telescope returns to orbit after its second servicing mission in February 1997. https://science.nasa.gov/mission/hubble/observatory/ (1997).

Johnson, J. A. & Bolte, M. The s-process in metal-poor stars: abundances for 22 neutron-capture elements in CS 31062-050. Astrophys. J. 605, 462–471 (2004).

Article 

Google Scholar
 

Aoki, W. et al. Carbon-enhanced metal-poor stars: osmium and iridium abundances in the neutron-capture-enhanced subgiants CS 31062-050 and LP 625-44*. Astrophys. J. Lett. 650, L127–L130 (2006).

Article 

Google Scholar
 

Lai, D. K., Johnson, J. A., Bolte, M. & Lucatello, S. Carbon and strontium abundances of metal-poor stars. Astrophys. J. 667, 1185–1195 (2007).

Article 

Google Scholar
 

Guttormsen, M. et al. Evolution of the γ-ray strength function in neodymium isotopes. Phys. Rev. C 106, 034314 (2022).

Article 

Google Scholar
 

Zeiser, F. et al. The γ-ray energy response of the Oslo Scintillator Array OSCAR. Nucl. Instrum. Methods Phys. Res. A 985, 164678 (2021).

Article 

Google Scholar
 

Guttormsen, M., Bürger, A., Hansen, T. & Lietaer, N. The SiRi particle-telescope system. Nucl. Instrum. Methods Phys. Res. A 648, 168–173 (2011).

Article 

Google Scholar
 

Vassh, N. et al. Thallium-208: a beacon of in situ neutron capture nucleosynthesis. Phys. Rev. Lett. 132, 052701 (2024).

Article 

Google Scholar