Alpher, R. A., Bethe, H. & Gamow, G. The origin of chemical elements. Phys. Rev. 73, 803–804 (1948).
Merrill, P. Technetium in the stars. Science 115, 484 (1952).
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).
Cameron, A. G. W. Nuclear reactions in stars and nucleogenesis. Publ. Astron. Soc. Pac. 69, 201–222 (1957).
Käppeler, F., Gallino, R., Bisterzo, S. & Aoki, W. The s process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83, 157–193 (2011).
Arnould, M., Goriely, S. & Takahashi, K. The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450, 97–213 (2007).
Horowitz, C. J. et al. r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G 46, 083001 (2019).
Cowan, J. J. et al. Origin of the heaviest elements: the rapid neutron-capture process. Rev. Mod. Phys. 93, 015002 (2021).
Arnould, M. & Goriely, S. The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status. Phys. Rep. 384, 1–84 (2003).
Rauscher, T. et al. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys. 76, 066201 (2013).
Cowan, J. J. & Rose, W. K. Production of 14C and neutrons in red giants. Astrophys. J. 212, 149–158 (1977).
Malaney, R. A. Neutron synthesis in AGB and post-AGB stars of low mass. Mon. Not R. Astron. Soc. 223, 683–707 (1986).
Jorissen, A. & Arnould, M. Proton mixing in He-rich layers. Astron. Astrophys. 221, 161–176 (1989).
Herwig, F. Evolution of asymptotic giant branch stars. Annu. Rev. Astron. Astrophys. 43, 435–479 (2005).
Werner, K. & Herwig, F. The elemental abundances in bare planetary nebula central stars and the shell burning in AGB stars. Publ. Astron. Soc. Pacif. 118, 183–204 (2006).
Iwamoto, N., Kajino, T., Mathews, G., Fujimoto, M. & Aoki, W. Flash-driven convective mixing in low-mass, metal-deficient asymptotic giant branch stars: a new paradigm for lithium enrichment and a possible s-process. Astrophys. J. 602, 377–387 (2004).
Cristallo, S. et al. Asymptotic-giant-branch models at very low metallicity. Proc. Astron. Soc. Aust. 26, 139–144 (2009).
Dardelet, L. et al. i process and CEMP-s+r stars. In XIII Nuclei in the Cosmos (NIC XIII), 145 (2014).
Hampel, M., Stancliffe, R. J., Lugaro, M. & Meyer, B. S. The s-process in the Nd–Sm region: constraints from i-process models and CEMP-r/s stars. Astrophys. J. 831, 171 (2016).
Beers, T. C. & Christlieb, N. The discovery and analysis of very metal-poor stars in the Galaxy. Annu. Rev. Astron. Astrophys. 43, 531–580 (2005).
Aoki, W., Norris, J. E., Ryan, S. G., Beers, T. C. & Ando, H. Subaru/HDS study of the extremely metal-poor star CS 29498-043: abundance analysis details and comparison with other carbon-rich objects. Publ. Astron. Soc. Jpn 54, 933–949 (2002).
Johnson, J. A. & Bolte, M. The systematic behavior of the s- and r-process elements in very metal-poor stars. Astrophys. J. 605, 462–471 (2004).
Jonsell, K. et al. The Hamburg/ESO r-process enhanced star survey (HERES)-III. HE0338-3945 and the formation of the r-and r/s-stars. Astron. Astrophys. 451, 651–670 (2006).
Bisterzo, S., Gallino, R., Straniero, O., Cristallo, S. & Käppeler, F. The s-process in low-metallicity stars — III. Individual analysis of CEMP-s and CEMP-s/r with asymptotic giant branch models. Mon. Not. R. Astron. Soc. 422, 849–884 (2012).
Asplund, M., Lambert, D. L., Kipper, T., Pollacco, D. & Shetrone, M. D. The rapid evolution of the born-again giant Sakurai’s object. Astron. Astrophys. 343, 507–518 (1999).
Herwig, F. et al. Convective-reactive proton-12C combustion in Sakurai’s object (V4334 Sagittarii) and implications for the evolution and yields from the first generations of stars. Astrophys. J. 727, 89 (2011).
Fujiya, W., Hoppe, P., Zinner, E., Pignatari, M. & Herwig, F. Evidence for radiogenic sulfur-32 in Type AB presolar silicon carbide grains? Astrophys. J. 776, L29 (2013).
Liu, N. et al. Isotopic records in AGB stars from the Torino postprocess AGB model. Astrophys. J. 786, 66 (2014).
Lugaro, M. et al. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars. Astron. Astrophys. 583, A77 (2015).
Cseh, B. et al. Barium stars as tracers of s-process nucleosynthesis in AGB stars. I. 28 stars with independently derived AGB mass. Astron. Astrophys. 661, A77 (2022).
den Hartogh, J. W. et al. Barium stars as tracers of s-process nucleosynthesis in AGB stars. II. Using machine learning techniques on 169 stars. Astron. Astrophys. 672, A143 (2023).
Világos, B. et al. Barium stars as tracers of s-process nucleosynthesis in AGB stars. III. Systematic deviations from the AGB models. Astron. Astrophys. 688, A164 (2024).
Roriz, M. P. et al. Tungsten in barium stars. Mon. Not. R. Astron. Soc. 528, 4354–4363 (2024).
Dorsch, M. et al. Heavy-metal enrichment of intermediate He-sdOB stars: the pulsators Feige 46 and LS IV-14°116 revisited. Astron. Astrophys. 643, A22 (2020).
Battich, T., Miller Bertolami, M. M., Serenelli, A. M., Justham, S. & Weiss, A. A self-synthesized origin for heavy metals in hot subdwarf stars. Astron. Astrophys. 680, L13 (2023).
Mishenina, T. et al. Abundances of neutron-capture elements in stars of the Galactic disk substructures. Mon. Not. R. Astron. Soc. 446, 3651–3668 (2015).
Bertolli, M. G., Herwig, F., Pignatari, M. & Kawano, T. Systematic and correlated nuclear uncertainties in the i-process at the neutron shell closure N = 82. Preprint at https://arXiv.org/abs/1310.4578 (2013).
Spyrou, A. et al. First study of the 139Ba(n, γ)140Ba reaction to constrain the conditions for the astrophysical i process. Phys. Rev. Lett. 132, 202701 (2024).
Keller, S. C. et al. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3. Nature 506, 463–466 (2014).
Clarkson, O., Herwig, F. & Pignatari, M. Nucleosynthesis in the first stars studied with a new, accurate neutron capture rate for 13C(α,n)16O. Mon. Not. R. Astron. Soc. 474, L37–L41 (2018).
McKay, J. E., Denissenkov, P. A., Herwig, F., Perdikakis, G. & Schatz, H. The impact of (n,γ) reaction rate uncertainties on the predicted abundances of i-process elements with 32 ≤ Z ≤ 48 in the metal-poor star HD94028. Mon. Not. R. Astron. Soc. 491, 5179–5187 (2019).
Alencastro Puls, A. et al. Chemical evolution of r-process elements in stars (CERES): IV. An observational run-up of the third r-process peak with Hf, Os, Ir, and Pt. Astron. Astrophys. 693, A294 (2025).
Côté, B. et al. Neutron star mergers might not be the only source of r-process elements in the Milky Way. Astrophys. J. 875, 106 (2019).
Masseron, T. et al. A holistic approach to carbon-enhanced metal-poor stars. Astron. Astrophys. 509, A93 (2010).
Hansen, C. J. et al. Abundances and kinematics of carbon-enhanced metal-poor stars in the Galactic halo. A new classification scheme based on Sr and Ba. Astron. Astrophys. 623, A128 (2019).
Karinkuzhi, D. et al. Low-mass low-metallicity AGB stars as an efficient i-process site explaining CEMP-rs stars. Astron. Astrophys. 645, A61 (2021).
Hansen, T. T. et al. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars — CEMP-s stars. Astron. Astrophys. 588, A3 (2016).
Vassh, N. et al. Classifying metal-poor stars with machine learning using nucleosynthesis calculations. Preprint at https://arxiv.org/abs/2505.14563 (2025).
Mashonkina, L. & Christlieb, N. The Hamburg/ESO r-process Enhanced Star survey (HERES). IX. Constraining pure r-process Ba/Eu abundance ratio from observations of r-II stars. Astron. Astrophys. 565, A123 (2014).
Magain, P. & Zhao, G. Barium isotopes in the very metal-poor star HD 140283. Astron. Astrophys. 268, L27 (1993).
Lambert, D. L. & Allende Prieto, C. The isotopic mixture of barium in the metal-poor subgiant HD 140283. Mon. Not. R. Astron. Soc. 335, 325–334 (2002).
Gallagher, A. J., Ludwig, H. G., Ryan, S. G. & Aoki, W. A three-dimensional hydrodynamical line profile analysis of iron lines and barium isotopes in HD 140283. Astron. Astrophys. 579, A94 (2015).
Van Eck, S. et al. From the s-process to the i-process: a new perspective on the chemical enrichment of extrinsic stars. Galaxies 12, 89 (2024).
Mashonkina, L. I. & Belyaev, A. K. Even-to-odd barium isotope ratio in selected galactic halo stars. Astron. Lett. 45, 341–353 (2019).
Gallagher, A. J. et al. Observational constraints on the origin of the elements. II. 3D non-LTE formation of Ba II lines in the solar atmosphere. Astron. Astrophys. 634, A55 (2020).
Bergemann, M., Lind, K., Collet, R., Magic, Z. & Asplund, M. Non-LTE line formation of Fe in late-type stars — I. Standard stars with 1D and 〈3D〉 model atmospheres. Mon. Not. R. Astron. Soc. 427, 27–49 (2012).
Lind, K. & Amarsi, A. M. Three-dimensional nonlocal thermodynamic equilibrium abundance analyses of late-type stars. Annu. Rev. Astron. Astrophys. 62, 475–527 (2024).
Jofré, P., Heiter, U. & Soubiran, C. Accuracy and precision of industrial stellar abundances. Annu. Rev. Astron. Astrophys. 57, 571–616 (2019).
Buder, S. et al. The GALAH+ survey: third data release. Mon. Not. R. Astron. Soc. 506, 150–201 (2021).
Abdurro’uf. et al. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 data. Astrophys. J. Suppl. Ser. 259, 35 (2022).
de Jong, R. S. et al. 4MOST: Project overview and information for the first call for proposals. The Messenger 175, 3–11 (2019).
Jin, S. et al. The wide-field, multiplexed, spectroscopic facility WEAVE: survey design, overview, and simulated implementation. Mon. Not. R. Astron. Soc. 530, 2688–2730 (2024).
Nissen, P. E. & Gustafsson, B. High-precision stellar abundances of the elements: methods and applications. Astron. Astrophys. Rev. 26, 6 (2018).
Herwig, F., Blöcker, T., Langer, N. & Driebe, T. On the formation of hydrogen-deficient post-AGB stars. Astron. Astrophys. 349, L5–L8 (1999).
Choplin, A., Siess, L. & Goriely, S. The intermediate neutron capture process III. The i-process in AGB stars of different masses and metallicities without overshoot. Astron. Astrophys. 667, A155 (2022).
Herwig, F., Woodward, P. R., Lin, P.-H., Knox, M. & Fryer, C. Global non-spherical oscillations in three-dimensional 4π simulations of the H-ingestion flash. Astrophys. J. Lett. 792, L3 (2014).
Hampel, M., Karakas, A. I., Stancliffe, R. J., Meyer, B. S. & Lugaro, M. Learning about the intermediate neutron-capture process from lead abundances. Astrophys. J. 887, 11 (2019).
Denissenkov, P. A., Herwig, F., Perdikakis, G. & Schatz, H. The impact of (n,γ) reaction rate uncertainties of unstable isotopes on the i-process nucleosynthesis of the elements from Ba to W. Mon. Not. R. Astron. Soc. 503, 3913–3925 (2021).
Choplin, A., Goriely, S. & Siess, L. Synthesis of thorium and uranium in asymptotic giant branch stars. Astron. Astrophys. 667, L13 (2022).
Choplin, A., Siess, L., Goriely, S. & Martinet, S. The intermediate neutron capture process V. The i-process in AGB stars with overshoot. Astron. Astrophys. 684, A206 (2024).
Denissenkov, P. A. et al. I-process nucleosynthesis and mass retention efficiency in he-shell flash evolution of rapidly accreting white dwarfs. Astrophys. J. Lett. 834, L10 (2017).
Denissenkov, P. A. et al. The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations. Mon. Not. R. Astron. Soc. 488, 4258–4270 (2019).
Stephens, D. et al. 3D1D hydro-nucleosynthesis simulations — I. Advective-reactive post-processing method and its application to H ingestion into He-shell flash convection in rapidly accreting white dwarfs. Mon. Not. R. Astron. Soc. 504, 744–760 (2021).
Fujimoto, M. Y., Ikeda, Y. & Iben Jr, I. The origin of extremely metal-poor carbon stars and the search for population III. Astrophys. J. Lett. 529, L25–L28 (2000).
Chieffi, A., Dominguez, I., Limongi, M. & Staniero, O. Evolution and nucleosynthesis of zero-metal intermediate-mass stars. Astrophys. J. 553, 1159–1174 (2001).
Siess, L., Livio, M. & Lattanzio, J. Structure, evolution, and nucleosynthesis of primordial stars. Astrophys. J. 570, 329–343 (2002).
Suda, T. & Fujimoto, M. Y. Evolution of low- and intermediate-mass stars with [Fe/H] Mon. Not. R. Astron. Soc. 405, 177–193 (2010).
Cristallo, S., Karinkuzhi, D., Goswami, A., Piersanti, L. & Gobrecht, D. Constraints of the physics of low-mass AGB stars from CH and CEMP Stars. Astrophys. J. 833, 181 (2016).
Choplin, A., Siess, L. & Goriely, S. The intermediate neutron capture process I. Development of the i-process in low-metallicity low-mass AGB stars. Astron. Astrophys. 648, A119 (2021).
Denissenkov, P. et al. The impact of (n,γ) reaction rate uncertainties of unstable isotopes near N = 50 on the i-process nucleosynthesis in He-shell flash white dwarfs. J. Phys. G 45, 055203 (2018).
Schlattl, H., Cassisi, S., Salaris, M. & Weiss, A. On the helium flash in low-mass population III red giant stars. Astrophys. J. 559, 1082–1093 (2001).
Campbell, S. W., Lugaro, M. & Karakas, A. I. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. II. s-process nucleosynthesis during the core He flash. Astron. Astrophys. 522, L6 (2010).
Cruz, M. A., Serenelli, A. & Weiss, A. s-process in extremely metal-poor, low-mass stars. Astron. Astrophys. 559, A4 (2013).
Jones, S. et al. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis. Mon. Not. R. Astron. Soc. 455, 3848–3863 (2016).
Siess, L. Evolution of massive AGB stars. II. Model properties at non-solar metallicity and the fate of super-AGB stars. Astron. Astrophys. 476, 893–909 (2007).
Banerjee, P., Qian, Y.-Z. & Heger, A. New neutron-capture site in massive Pop III and Pop II stars as a source for heavy elements in the early Galaxy. Astrophys. J. 865, 120 (2018).
Clarkson, O., Herwig, F. & Pignatari, M. Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars. Mon. Not. R. Astron. Soc. 474, L37–L41 (2018).
Clarkson, O. & Herwig, F. Convective H-He interactions in massive Population III stellar evolution models. Mon. Not. R. Astron. Soc. 500, 2685–2703 (2021).
Goriely, S., Siess, L. & Choplin, A. The intermediate neutron capture process II. Nuclear uncertainties. Astron. Astrophys. 654, A129 (2021).
Martinet, S., Choplin, A., Goriely, S. & Siess, L. The intermediate neutron capture process IV. Impact of nuclear model and parameter uncertainties. Astron. Astrophys. 684, A8 (2024).
Hauser, W. & Feshbach, H. The inelastic scattering of neutrons. Phys. Rev. 87, 366–373 (1952).
Bartholomew, G. A., Earle, E. D., Ferguson, A. J., Knowles, J. W. & Lone, M. A.Gamma-Ray Strength Functions, 229–324 (Springer, 1973).
Wiedeking, M. & Goriely, S. Photon strength functions and nuclear level densities: invaluable input for nucleosynthesis. Phil. Trans. R. Soc. A 382, 20230125 (2024).
Capote, R. et al. Reference Input Parameter Library (RIPL-3). Nucl. Data Sheets 110, 3107–3214 (2009).
Bethe, H. An attempt to calculate the number of energy levels of a heavy nucleus. Phys. Rev. 50, 332–341 (1936).
Ericson, T. A statistical analysis of excited nuclear states. Nucl. Phys. 11, 481–491 (1959).
Gilbert, A. & Cameron, A. G. W. A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446–1496 (1965).
Demetriou, P. & Goriely, S. Microscopic nuclear level densities for practical applications. Nucl. Phys. A 695, 95–108 (2001).
Goriely, S., Hilaire, S. & Koning, A. J. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications. Astron. Astrophys. 487, 767–774 (2008).
Hilaire, S., Girod, M., Goriely, S. & Koning, A. J. Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012).
Døssing, T. & Aberg, S. Collective enhancements in nuclear level densities. Eur. Phys. J. A 55, 249 (2019).
Zelevinsky, V. & Karampagia, S. Nuclear level density and related physics. EPJ Web Conf. 194, 01001 (2018).
Alhassid, Y. The shell model Monte Carlo approach to level densities: recent developments and perspectives. Eur. Phys. J. A 51, 171 (2015).
Wang, J., Dutta, S., Wang, L.-J. & Sun, Y. Projected shell model description of nuclear level density: collective, pair-breaking, and multiquasiparticle regimes in even–even nuclei. Phys. Rev. C 108, 034309 (2023).
Hilaire, S., Goriely, S., Péru, S. & Gosselin, G. A new approach to nuclear level densities: the QRPA plus boson expansion. Phys. Lett. B 843, 137989 (2023).
Kadmenskii, S., Markushev, V. & Furmann, V. Radiative strength functions and the problem of enhanced radiative capture in the region of superfluid nuclei. Sov. J. Nucl. Phys. 37, 165–168 (1983).
Mercenne, A., Fanto, P., Ryssens, W. & Alhassid, Y. Magnetic dipole γ-ray strength functions in the crossover from spherical to deformed neodymium isotopes. Phys. Rev. C 110, 054313 (2024).
Chen, F.-Q., Niu, Y. F., Sun, Y. & Wiedeking, M. Origin of the low-energy enhancement of the γ-ray strength function. Phys. Rev. Lett. 134, 082502 (2025).
Goriely, S. et al. Reference database for photon strength functions. Eur. Phys. J. A 55, 172 (2019).
Daoutidis, I. & Goriely, S. Large-scale continuum random-phase approximation predictions of dipole strength for astrophysical applications. Phys. Rev. C 86, 034328 (2012).
Egorova, I. A. & Litvinova, E. Electric dipole response of neutron-rich calcium isotopes in relativistic quasiparticle time blocking approximation. Phys. Rev. C 94, 034322 (2016).
Voinov, A. et al. Large enhancement of radiative strength for soft transitions in the quasicontinuum. Phys. Rev. Lett. 93, 142504 (2004).
Wiedeking, M. et al. Low-energy enhancement in the photon strength of 95Mo. Phys. Rev. Lett. 108, 162503 (2012).
Larsen, A. C. et al. Low-energy enhancement and fluctuations of γ-ray strength functions in 56,57Fe: test of the Brink–Axel hypothesis. J. Phys. G 44, 064005 (2017).
Jones, M. D. et al. Examination of the low-energy enhancement of the γ-ray strength function of 56Fe. Phys. Rev. C 97, 024327 (2018).
Litvinova, E. & Belov, N. Low-energy limit of the radiative dipole strength in nuclei. Phys. Rev. C 88, 031302(R) (2013).
Schwengner, R., Frauendorf, S. & Larsen, A. C. Low-energy enhancement of magnetic dipole radiation. Phys. Rev. Lett. 111, 232504 (2013).
Schwengner, R., Frauendorf, S. & Brown, B. A. Low-energy magnetic dipole radiation in open-shell nuclei. Phys. Rev. Lett. 118, 092502 (2017).
Frauendorf, S. & Schwengner, R. Evolution of low-lying M1 modes in germanium isotopes. Phys. Rev. C 105, 034335 (2022).
Goriely, S., Hilaire, S., Péru, S. & Sieja, K. Gogny-HFB+QRPA dipole strength function and its application to radiative nucleon capture cross section. Phys. Rev. C 98, 014327 (2018).
Cramer, J. D. & Britt, H. C. Neutron fission cross sections for 231Th, 233Th, 235U, 237U, 239U, 241Pu, and 243Pu from 0.5 to 2.25 MeV using (t, pf) reactions. Nucl. Sci. Eng. 41, 177–187 (1970).
Escher, J. E. et al. Compound-nuclear reaction cross sections from surrogate measurements. Rev. Mod. Phys. 84, 353–397 (2012).
Wilson, J. N. et al. Indirect (n,γ) cross sections of thorium cycle nuclei using the surrogate method. Phys. Rev. C 85, 034607 (2012).
Potel, G., Nunes, F. M. & Thompson, I. J. Establishing a theory for deuteron-induced surrogate reactions. Phys. Rev. C 92, 034611 (2015).
Ducasse, Q. et al. Investigation of the 238U(d,p) surrogate reaction via the simultaneous measurement of γ-decay and fission probabilities. Phys. Rev. C 94, 024614 (2016).
Escher, J. E. et al. Constraining neutron capture cross sections for unstable nuclei with surrogate reaction data and theory. Phys. Rev. Lett. 121, 052501 (2018).
Ratkiewicz, A. et al. Towards neutron capture on exotic nuclei: demonstrating (d,pγ) as a surrogate reaction for (n,γ). Phys. Rev. Lett. 122, 052502 (2019).
Escher, J. E. The surrogate nuclear reaction method: concept, recent advances, and new opportunities. EPJ Web Conf. 322, 03001 (2025).
Sguazzin, M. et al. First measurement of the neutron-emission probability with a surrogate reaction in inverse kinematics at a heavy-ion storage ring. Phys. Rev. Lett. 134, 072501 (2025).
Allmond, J. M. et al. Relative 235U(n,γ) and (n,f) cross sections from 235U(d,pγ) and (d,pf). Phys. Rev. C 79, 054610 (2009).
Hatarik, R. et al. Benchmarking a surrogate reaction for neutron capture. Phys. Rev. C 81, 011602 (2010).
Yan, S. Q. et al. Examination of the surrogate ratio method for the determination of the 93Zr (n,γ) 94Zr cross section with 90,92Zr (18O,16O)92,94Zr reactions. Phys. Rev. C 94, 015804 (2016).
Yan, S. Q. et al. The 95Zr(n,γ)96Zr cross section from the surrogate ratio method and its effect on s-process nucleosynthesis. Astrophys. J. 848, 98 (2017).
Yan, S. Q. et al. The 59Fe(n,γ)60Fe cross section from the surrogate ratio method and its effect on the 60Fe nucleosynthesis. Astrophys. J. 919, 84 (2021).
Rekstad, J. et al. A study of nuclear structure at high energy and low spin. Phys. Scr. T5, 45–50 (1983).
Bergholt, L., Guttormsen, M., Rekstad, J. & Tveter, T. On the relation between the statistical gamma-decay and the level density in 162Dy. Nucl. Phys. A 589, 249–266 (1995).
Tveter, T. S., Bergholt, L., Guttormsen, M., Melby, E. & Rekstad, J. Observation of fine structure in nuclear level densities and γ-ray strength functions. Phys. Rev. Lett. 77, 2404 (1996).
Schiller, A. et al. Extraction of level density and gamma strength function from primary gamma spectra. Nucl. Instrum. Methods Phys. Res. A 447, 498–511 (2000).
Markova, M. et al. Nuclear level densities and γ-ray strength functions of 111, 112, 113SN isotopes studied with the Oslo method. Phys. Rev. C 108, 014315 (2023).
Guttormsen, M., Tveter, T., Bergholt, L., Ingebretsen, F. & Rekstad, J. The unfolding of continuum gamma-ray spectra. Nucl. Instrum. Methods Phys. Res. A 374, 371–376 (1996).
Guttormsen, M., Ramsøy, T. & Rekstad, J. The first generation of gamma-rays from hot nuclei. Nucl. Instrum. Methods Phys. Res. A 255, 518–523 (1987).
Brink, D. M. Some Aspects of the Interaction of Light with Matter. PhD thesis, Oxford Univ. (1955).
Axel, P. Electric dipole ground-state transition. Phys. Rev. 126, 671–683 (1962).
Pogliano, F. et al. Indirect measurement of the (n,γ)127Sb cross section. Phys. Rev. C 106, 015804 (2022).
Ingeberg, V. W. et al. First application of the Oslo method in inverse kinematics. Eur. Phys. J. A 56, 68 (2020).
Ingeberg, V. W. et al. Nuclear level density and γ-ray strength function of 67Ni and the impact on the i process. Phys. Rev. C 111, 015803 (2025).
Spyrou, A. et al. Novel technique for constraining r-process (n,γ) reaction rates. Phys. Rev. Lett. 113, 232502 (2014).
Liddick, S. et al. Experimental neutron capture rate constraint far from stability. Phys. Rev. Lett. 116, 242502 (2016).
Liddick, S. N. et al. Benchmarking the extraction of statistical neutron capture cross sections on short-lived nuclei for applications using the β-Oslo method. Phys. Rev. C 100, 024624 (2019).
Wiedeking, M. et al. Independent normalization for γ-ray strength functions: the shape method. Phys. Rev. C 104, 014311 (2021).
Mücher, D. et al. Extracting model-independent nuclear level densities away from stability. Phys. Rev. C 107, L011602 (2023).
Sweet, A. et al. Nuclear level density and γ-decay strength of 93Sr. Phys. Rev. C 109, 054305 (2024).
Klein, M. J. Principle of detailed balance. Phys. Rev. 97, 1446 (1955).
Rossi, D. M. et al. Measurement of the dipole polarizability of the unstable neutron-rich nucleus 68Ni. Phys. Rev. Lett. 111, 242503 (2013).
Wieland, O. et al. Low-lying dipole response in the unstable 70Ni nucleus. Phys. Rev. C 98, 064313 (2018).
Adrich, P. et al. Evidence for pygmy and giant dipole resonances in 130Sn and 130Sn. Phys. Rev. Lett. 95, 132501 (2005).
Ershova, O. et al. Coulomb dissociation reactions on Mo isotopes for astrophysics applications. In Proc. 11th Symposium on Nuclei in the Cosmos (NIC XI), vol. 100, 232 (PoS, 2011).
Takeuchi, S. et al. Coulomb breakup reactions of 93,94Zr in inverse kinematics. Prog. Theor. Exp. Phys. 2019, 013D02 (2019).
Avigo, R. et al. Low-lying electric dipole γ-continuum for the unstable 62,64Fe nuclei: strength evolution with neutron number. Phys. Lett. B 811, 135951 (2020).
Vonach, H. Extraction of level density information from non-resonance reactions. In Proc. IAEA Advisory Group Meeting on Basic and Applied Problems of Nuclear Level Densities (ed. Bhat, M. R.). BNL Report No. BNL-NCS-51694, 247–290 (Brookhaven National Laboratory, 1983).
Voinov, A. V. et al. Reduction of the neutron imaginary potential off the stability line and its possible impact on neutron capture rates. Phys. Rev. C 104, 015805 (2021).
Soltesz, D. et al. Determination of the 60Zn level density from neutron evaporation spectra. Phys. Rev. C 103, 015802 (2021).
Voinov, A. V. et al. Level densities for 69,71Ga nuclei using a particle-evaporation technique. Phys. Rev. C 109, 054601 (2024).
Gull, M. et al. The R-Process Alliance: discovery of the first metal-poor star with a combined r- and s-process element signature. Astrophys. J. 862, 174 (2018).
Meyer, B. S., Clayton, D. D. & The, L.-S. Molybdenum and zirconium isotopes from a supernova neutron burst. Astrophys. J. 540, L49–L52 (2000).
Roederer, I. U., Karakas, A. I., Pignatari, M. & Herwig, F. The diverse origins of neutron-capture elements in the metal-poor star HD 94028: possible detection of products of i-process nucleosynthesis. Astrophys. J. 821, 37 (2016).
The first meteorite identified on another planet by NASA’s Mars Exploration Rover Opportunity. https://www.nasa.gov/image-article/mars-meteorite/ (2005).
The Hubble Space Telescope returns to orbit after its second servicing mission in February 1997. https://science.nasa.gov/mission/hubble/observatory/ (1997).
Johnson, J. A. & Bolte, M. The s-process in metal-poor stars: abundances for 22 neutron-capture elements in CS 31062-050. Astrophys. J. 605, 462–471 (2004).
Aoki, W. et al. Carbon-enhanced metal-poor stars: osmium and iridium abundances in the neutron-capture-enhanced subgiants CS 31062-050 and LP 625-44*. Astrophys. J. Lett. 650, L127–L130 (2006).
Lai, D. K., Johnson, J. A., Bolte, M. & Lucatello, S. Carbon and strontium abundances of metal-poor stars. Astrophys. J. 667, 1185–1195 (2007).
Guttormsen, M. et al. Evolution of the γ-ray strength function in neodymium isotopes. Phys. Rev. C 106, 034314 (2022).
Zeiser, F. et al. The γ-ray energy response of the Oslo Scintillator Array OSCAR. Nucl. Instrum. Methods Phys. Res. A 985, 164678 (2021).
Guttormsen, M., Bürger, A., Hansen, T. & Lietaer, N. The SiRi particle-telescope system. Nucl. Instrum. Methods Phys. Res. A 648, 168–173 (2011).
Vassh, N. et al. Thallium-208: a beacon of in situ neutron capture nucleosynthesis. Phys. Rev. Lett. 132, 052701 (2024).