Upadhyay, A. Cancer: An unknown territory; rethinking before going ahead. Genes Dis. 8, 655–661 (2021).


Google Scholar
 

Bourgeois, A. et al. Barriers to cancer treatment for people experiencing socioeconomic disadvantage in high-income countries: a scoping review. BMC Health Serv. Res. 24, 670 (2024).


Google Scholar
 

Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).


Google Scholar
 

Majérus, M.-A. The cause of cancer: The unifying theory. Adv. Cancer Biol.—Metastasis 4, 100034 (2022).


Google Scholar
 

Song, Q., Merajver, S. D. & Li, J. Z. Cancer classification in the genomic era: five contemporary problems. Hum. Genom. 9, 27 (2015).


Google Scholar
 

Geéron A. Hands-on Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems (E-book, O’Reilly, 2017).

Basu, K., Sinha, R., Ong, A. & Basu, T. Artificial intelligence: how is it changing medical sciences and its future? Indian J. Dermatol. 65, 365–370 (2020).


Google Scholar
 

Xu, Y. et al. Artificial intelligence: a powerful paradigm for scientific research. Innovation 2, 100179 (2021).


Google Scholar
 

Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).


Google Scholar
 

Yan, K., Wang, Y., Shao, Y. & Xiao, T. Gene Instability-Related lncRNA Prognostic Model of Melanoma Patients via Machine Learning Strategy. J Oncol 2021, 5582920 (2021).


Google Scholar
 

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).


Google Scholar
 

Guo, L. et al. Random-forest algorithm based biomarkers in predicting prognosis in the patients with hepatocellular carcinoma. Cancer Cell Int. 20, 251 (2020).


Google Scholar
 

Rajpurkar, P. et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 15, e1002686 (2018).


Google Scholar
 

Sebastian, A. M. & Peter, D. Artificial intelligence in cancer research: trends, challenges and future directions. Life 12, 1991 (2022).


Google Scholar
 

Alowais, S. A. et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med. Educ. 23, 689 (2023).


Google Scholar
 

Gillum, R. F. From papyrus to the electronic tablet: a brief history of the clinical medical record with lessons for the digital age. Am. J. Med. 126, 853–857 (2013).


Google Scholar
 

Post, A. R., Burningham, Z. & Halwani, A. S. Electronic Health Record data in Cancer Learning Health Systems: challenges and opportunities. JCO Clin. Cancer Inf 6, e2100158 (2022).


Google Scholar
 

Chen, X. et al. A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules. Cancer Imaging 20, 45 (2020).


Google Scholar
 

Beig, N. et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology 290, 783–792 (2019).


Google Scholar
 

Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019).


Google Scholar
 

Baldwin, D. R. et al. External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax 75, 306–312 (2020).


Google Scholar
 

Roth, H. R. et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 35, 1170–1181 (2016).


Google Scholar
 

Spadaccini, M. et al. Discovering the first US FDA-approved computer-aided polyp detection system. Future Oncol 18, 1405–1412 (2022).


Google Scholar
 

Zhang, S. M., Wang, Y. J. & Zhang, S. T. Accuracy of artificial intelligence-assisted detection of esophageal cancer and neoplasms on endoscopic images: a systematic review and meta-analysis. J. Dig. Dis. 22, 318–328 (2021).


Google Scholar
 

Baik, Y. S., Lee, H., Kim, Y. J., Chung, J. W. & Kim, K. G. Early detection of esophageal cancer: evaluating AI algorithms with multi-institutional narrowband and white-light imaging data. PLoS ONE 20, e0321092 (2025).


Google Scholar
 

Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).


Google Scholar
 

Shebib, R. et al. Randomized controlled trial of a 12-week digital care program in improving low back pain. NPJ Digit. Med. 2, 1 (2019).


Google Scholar
 

Saltz, J. et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 23, 181–93.e7 (2018).


Google Scholar
 

Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).


Google Scholar
 

Yu, L., Chen, H., Dou, Q., Qin, J. & Heng, P. A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36, 994–1004 (2017).


Google Scholar
 

Vasaikar, S. V., Straub, P., Wang, J. & Zhang, B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 46, D956–d63 (2018).


Google Scholar
 

Wang, Y., Su, H., Lu, Y. & Li, H. Regulatory Role of Fatty Acid Metabolism-Related Long Noncoding RNA in Prostate Cancer: A Computational Biology Study Analysis. J Oncol 2023, 9736073 (2023).


Google Scholar
 

Lee, J. S. et al. Harnessing synthetic lethality to predict the response to cancer treatment. Nat. Commun. 9, 2546 (2018).


Google Scholar
 

Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018).


Google Scholar
 

Davis, R. J. et al. Pan-cancer transcriptional signatures predictive of oncogenic mutations reveal that Fbw7 regulates cancer cell oxidative metabolism. Proc. Natl. Acad. Sci. USA 115, 5462–5467 (2018).


Google Scholar
 

Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–48.e24 (2019).


Google Scholar
 

Rahman, M. A. et al. Impact of artificial intelligence (AI) technology in healthcare sector: a critical evaluation of both sides of the coin. Clin. Pathol. 17, 2632010×241226887 (2024).


Google Scholar
 

Sezgin, E., Huang, Y., Ramtekkar, U. & Lin, S. Readiness for voice assistants to support healthcare delivery during a health crisis and pandemic. NPJ Digit. Med. 3, 122 (2020).


Google Scholar
 

Brill, T. M., Munoz, L. & Miller, R. J. Siri, Alexa, and other digital assistants: a study of customer satisfaction with artificial intelligence applications. In The Role of Smart Technologies in Decision Making (eds. Eleonora P. and Francesca S.) 35–70 (Routledge, 2022).

Woodman, R. J. & Mangoni, A. A. A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future. Aging Clin. Exp. Res. 35, 2363–2397 (2023).


Google Scholar
 

Janiesch, C., Zschech, P. & Heinrich, K. Machine learning and deep learning. Electron. Mark. 31, 685–695 (2021).


Google Scholar
 

Taye, M. M. Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers 12, 91 (2023).


Google Scholar
 

Patil, S. et al. Reviewing the role of artificial intelligence in cancer. Asian Pac. J. Cancer Biol. 5, 189–199 (2020).


Google Scholar
 

Moeskops, P. et al. (eds) Deep learning for multi-task medical image segmentation in multiple modalities. In International Conference on Medical Image Computing and Computer-assisted Intervention (Springer, 2016).

Al Sharkawy M. et al. Breast cancer detection using support vector machine technique applied on extracted electromagnetic waves. Appl. Comput. Electromagn. Soc. J. 292–301 (2012).

Li, M., Jiang, Y., Zhang, Y. & Zhu, H. Medical image analysis using deep learning algorithms. Front. Public Health 11, 1273253 (2023).


Google Scholar
 

Wong, J., Horwitz, M. M., Zhou, L. & Toh, S. Using machine learning to identify health outcomes from electronic health record data. Curr. Epidemiol. Rep. 5, 331–342 (2018).


Google Scholar
 

Yang, S., Varghese, P., Stephenson, E., Tu, K. & Gronsbell, J. Machine learning approaches for electronic health records phenotyping: a methodical review. J. Am. Med. Inf. Assoc. 30, 367–381 (2023).


Google Scholar
 

Javaid, M., Haleem, A., Pratap Singh, R., Suman, R. & Rab, S. Significance of machine learning in healthcare: features, pillars and applications. Int. J. Intell. Netw. 3, 58–73 (2022).


Google Scholar
 

Tayefi, M. et al. Challenges and opportunities beyond structured data in analysis of electronic health records. Wiley Interdiscip. Rev. Comput. Stat. 13, e1549 (2021).


Google Scholar
 

Ngiam, K. Y. & Khor, I. W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20, e262–e273 (2019).


Google Scholar
 

Ahsan, M. M., Luna, S. A. & Siddique, Z. Machine-learning-based disease diagnosis: a comprehensive review. Healthcare (Basel) 10, 541 (2022).


Google Scholar
 

Qasrawi, R. et al. The role of machine learning in infectious disease early detection and prediction in the MENA region: a systematic review. Inform. Med. Unlocked 56, 101651 (2025).


Google Scholar
 

Mehta, J. & Majumdar, A. Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction. Pattern Recognit 63, 499–510 (2017).


Google Scholar
 

Choudhary, K. et al. Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8, 59 (2022).


Google Scholar
 

Alzubaidi, L. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 53 (2021).


Google Scholar
 

Ahmed, S. F. et al. Deep learning modelling techniques: current progress, applications, advantages, and challenges. Artif. Intell. Rev. 56, 13521–13617 (2023).


Google Scholar
 

Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).


Google Scholar
 

Erfanian, N. et al. Deep learning applications in single-cell genomics and transcriptomics data analysis. Biomed. Pharmacother. 165, 115077 (2023).


Google Scholar
 

Rainio, O. & Klén, R. Convolutional neural networks for tumor segmentation by cancer type and imaging modality: a systematic review. Netw. Model. Anal. Health Inform. Bioinform. 14, 58 (2025).


Google Scholar
 

Gull, S., Akbar, S. & Khan, H. U. Automated detection of brain tumor through magnetic resonance images using convolutional neural network. BioMed. Res. Int. 2021, 3365043 (2021).


Google Scholar
 

Alqazzaz, S. et al. Combined features in region of interest for brain tumor segmentation. J. Digit. Imaging 35, 938–946 (2022).


Google Scholar
 

Ranjbarzadeh, R., Zarbakhsh, P., Caputo, A., Tirkolaee, E. B. & Bendechache, M. Brain tumor segmentation based on optimized convolutional neural network and improved chimp optimization algorithm. Comput. Biol. Med. 168, 107723 (2024).


Google Scholar
 

Lin, W.-W. et al. 3D brain tumor segmentation using a two-stage optimal mass transport algorithm. Sci. Rep. 11, 14686 (2021).


Google Scholar
 

Choi, E., Schuetz, A., Stewart, W. F. & Sun, J. Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inf. Assoc. 24, 361–370 (2017).


Google Scholar
 

Raval, D. & Undavia, J. N. A Comprehensive assessment of Convolutional Neural Networks for skin and oral cancer detection using medical images. Healthc. Anal. 3, 100199 (2023).


Google Scholar
 

Chen, R., Stewart, W. F., Sun, J., Ng, K. & Yan, X. Recurrent neural networks for early detection of heart failure from longitudinal Electronic Health Record data: implications for temporal modeling with respect to time before diagnosis, data density, data quantity, and data type. Circ. Cardiovasc. Qual. Outcomes 12, e005114 (2019).


Google Scholar
 

Hussain, J., Båth, M. & Ivarsson, J. Generative adversarial networks in medical image reconstruction: a systematic literature review. Comput. Biol. Med. 191, 110094 (2025).


Google Scholar
 

Makhlouf, A., Maayah, M., Abughanam, N. & Catal, C. The use of generative adversarial networks in medical image augmentation. Neural Comput. Appl. 35, 24055–24068 (2023).


Google Scholar
 

Alajaji, S. A. et al. Generative adversarial networks in digital histopathology: current applications, limitations, ethical considerations, and future directions. Mod. Pathol. 37, 100369 (2024).


Google Scholar
 

Koshino, K. et al. Narrative review of generative adversarial networks in medical and molecular imaging. Ann. Transl. Med. 9, 821 (2021).


Google Scholar
 

Nawab, K., Ramsey, G. & Schreiber, R. Natural language processing to extract meaningful information from patient experience feedback. Appl. Clin. Inf. 11, 242–252 (2020).


Google Scholar
 

Maleki Varnosfaderani, S. & Forouzanfar, M. The role of AI in hospitals and clinics: transforming healthcare in the 21st century. Bioengineering (Basel, Switzerland) 11, 337 (2024).


Google Scholar
 

Khurana, D., Koli, A., Khatter, K. & Singh, S. Natural language processing: state of the art, current trends and challenges. Multimed. Tools Appl. 82, 3713–3744 (2023).


Google Scholar
 

Supriyono, W., Suyono, A. P. & Kurniawan, F. Advancements in natural language processing: implications, challenges, and future directions. Telemat. Inform. Rep. 16, 100173 (2024).


Google Scholar
 

Serrano-Guerrero, J., Bani-Doumi, M., Chiclana, F., Romero, F. P. & Olivas, J. A. How satisfied are patients with nursing care and why? A comprehensive study based on social media and opinion mining. Inf. Health Soc. Care 49, 14–27 (2024).


Google Scholar
 

Scharkow, M. Thematic content analysis using supervised machine learning: an empirical evaluation using German online news. Qual. Quant. 47, 761–773 (2013).


Google Scholar
 

van Buchem, M. M. et al. Analyzing patient experiences using natural language processing: development and validation of the Artificial Intelligence Patient Reported Experience Measure (AI-PREM). BMC Med. Inf. Decis. Mak. 22, 183 (2022).


Google Scholar
 

Javaid, M., Haleem, A., Singh, R. P. & Ahmed, M. Computer vision to enhance healthcare domain: an overview of features, implementation, and opportunities. Intell. Pharm. 2, 792–803 (2024).


Google Scholar
 

Al-Oraiqat, A. M. et al. Method for determining treated metal surface quality using computer vision technology. Sensors 22, 6223 (2022).


Google Scholar
 

Gumbs, A. A. et al. The advances in computer vision that are enabling more autonomous actions in surgery: a systematic review of the literature. Sensors (Basel, Switzerland) 22, 4918 (2022).


Google Scholar
 

Dudek, P. et al. Sensor-level computer vision with pixel processor arrays for agile robots. Sci. Robot. 7, eabl7755 (2022).


Google Scholar
 

Hassan, H. et al. Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks. Comput. Biol. Med. 141, 105123 (2022).


Google Scholar
 

Wu, Z., Chen, Y., Zhao, B., Kang, X. & Ding, Y. Review of weed detection methods based on computer vision. Sensors 21, 3647 (2021).


Google Scholar
 

Lee, J. O., Zhou, H. Y., Berzin, T. M., Sodickson, D. K. & Rajpurkar, P. Multimodal generative AI for interpreting 3D medical images and videos. NPJ Digit. Med. 8, 273 (2025).


Google Scholar
 

Rani, K., Kumar, A., Kumar, S., Gupta, A. & Singh, A. Medical imaging using machine learning, computer vision and applications. Int. J. Eng. Sci. Emerg. Technol. 11, 260–268 (2023).


Google Scholar
 

Sharma, A. et al. Computer vision based healthcare system for identification of diabetes & its types using AI. Meas. Sens. 27, 100751 (2023).


Google Scholar
 

Awwad, S., Tarvade, S., Piccardi, M. & Gattas, D. J. The use of privacy-protected computer vision to measure the quality of healthcare worker hand hygiene. Int. J. Qual. Health Care 31, 36–42 (2019).


Google Scholar
 

Wang, D. et al. Real world validation of an AI-based CT hemorrhage detection tool. Front. Neurol. 14, 1177723 (2023).


Google Scholar
 

Buaka, E. S. D. & Moid, M. Z. I. AI and medical imaging technology: evolution, impacts, and economic insights. J. Technol. Transf. 49, 2260–2272 (2024).


Google Scholar
 

Ali, H., Mohsen, F. & Shah, Z. Improving diagnosis and prognosis of lung cancer using vision transformers: a scoping review. BMC Med. Imaging 23, 129 (2023).


Google Scholar
 

Eswaran, U. & Khang, A. Artificial intelligence (AI)-aided computer vision (CV) in healthcare system. In Computer Vision and AI-Integrated IoT Technologies in the Medical Ecosystem (eds. Alex K., Vugar A., Olena H. and Arvind K. S.) 125–137 (CRC Press, 2024).

Najar Najafi, N., Hajihassani, H. & Azimzadeh Irani, M. The impact of artificial intelligence on cancer diagnosis and treatment: a review. Cancer Inform 24, 11769351251371273 (2025).


Google Scholar
 

Surur, F. M. et al. Unlocking the power of machine learning in big data: a scoping survey. Data Sci. Manag. 8, 519–535 (2025).


Google Scholar
 

Taherdoost, H. Deep learning and neural networks: decision-making implications. Symmetry 15, 1723 (2023).


Google Scholar
 

Chai, J., Zeng, H., Li, A. & Ngai, E. W. T. Deep learning in computer vision: a critical review of emerging techniques and application scenarios. Mach. Learn. Appl. 6, 100134 (2021).


Google Scholar
 

Liang, M. et al. Low-dose CT screening for lung cancer: computer-aided detection of missed lung cancers. Radiology 281, 279–288 (2016).


Google Scholar
 

Bi, W. L. et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J. Clin. 69, 127–157 (2019).


Google Scholar
 

Rastogi, D. et al. Deep learning-integrated MRI brain tumor analysis: feature extraction, segmentation, and survival prediction using replicator and volumetric networks. Sci. Rep. 15, 1437 (2025).


Google Scholar
 

Zhao, X. et al. Deep bone oncology diagnostics: computed tomography based Machine learning for detection of bone tumors from breast cancer metastasis. J. Bone Oncol. 48, 100638 (2024).


Google Scholar
 

Yuan, X. et al. Systematic review and meta-analysis of artificial intelligence for image-based lung cancer classification and prognostic evaluation. npj Precis. Oncol. 9, 300 (2025).


Google Scholar
 

Yao, I. Z., Dong, M. & Hwang, W. Y. K. Deep learning applications in clinical cancer detection: a review of implementation challenges and solutions. Mayo Clin. Proc.: Digit. Health 3, 100253 (2025).


Google Scholar
 

Das, S., Dey, M. K., Devireddy, R. & Gartia, M. R. Biomarkers in cancer detection, diagnosis, and prognosis. Sensors 24, 37 (2024).


Google Scholar
 

Rusanov, B. et al. Guidance on selecting and evaluating AI auto-segmentation systems in clinical radiotherapy: insights from a six-vendor analysis. Phys. Eng. Sci. Med. 48, 301–316 (2025).


Google Scholar
 

Sarkar, S., Teo, P. T. & Abazeed, M. E. Deep learning for automated, motion-resolved tumor segmentation in radiotherapy. npj Precis. Oncol. 9, 173 (2025).


Google Scholar
 

Huang, J. et al. Application of artificial intelligence in medical imaging for tumor diagnosis and treatment: a comprehensive approach. Discov. Oncol. 16, 1625 (2025).


Google Scholar
 

Fountzilas, E., Pearce, T., Baysal, M. A., Chakraborty, A. & Tsimberidou, A. M. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. npj Digit. Med. 8, 75 (2025).


Google Scholar
 

Zhang, B., Shi, H. & Wang, H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: a critical approach. J. Multidiscip. Health 16, 1779–1791 (2023).


Google Scholar
 

Mohamed, A. A. et al. A deep learning method for classifying mammographic breast density categories. Med. Phys. 45, 314–321 (2018).


Google Scholar
 

Arieno, A., Chan, A. & Destounis, S. V. A review of the role of augmented intelligence in breast imaging: from automated breast density assessment to risk stratification. Am. J. Roentgenol. 212, 259–270 (2019).


Google Scholar
 

Yala, A., Lehman, C., Schuster, T., Portnoi, T. & Barzilay, R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292, 60–66 (2019).


Google Scholar
 

Dembrower, K. et al. Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction. Radiology 294, 265–272 (2020).


Google Scholar
 

Le Boulc’h, M. et al. Comparison of breast density assessment between human eye and automated software on digital and synthetic mammography: Impact on breast cancer risk. Diagn. Int. Imaging 101, 811–819 (2020).


Google Scholar
 

Wu, G., Bajestani, N., Pracha, N., Chen, C. & Makary, M. S. Hepatocellular carcinoma surveillance strategies: major guidelines and screening advances. Cancers (Basel) 16, 3933 (2024).


Google Scholar
 

McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020).


Google Scholar
 

Dembrower, K. et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit. Health 2, e468–e474 (2020).


Google Scholar
 

Lennox-Chhugani, N., Chen, Y., Pearson, V., Trzcinski, B. & James, J. Women’s attitudes to the use of AI image readers: a case study from a national breast screening programme. BMJ Health Care Inform 28, e100293 (2021).


Google Scholar
 

Eisemann, N. et al. Nationwide real-world implementation of AI for cancer detection in population-based mammography screening. Nat. Med. 31, 917–924 (2025).


Google Scholar
 

Jiang, Y., Edwards, A. V. & Newstead, G. M. Artificial intelligence applied to breast MRI for improved diagnosis. Radiology 298, 38–46 (2021).


Google Scholar
 

Feng, Q., Liu, Z. & Chen, C. L. P. Broad and deep neural network for high-dimensional data representation learning. Inf. Sci. 599, 127–146 (2022).


Google Scholar
 

Cui, Z. & Grindrod, P. Mappings, dimensionality and reversing out of deep neural networks. IMA J. Appl. Math. 89, 2–11 (2024).


Google Scholar
 

Sarker, I. H. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2, 420 (2021).


Google Scholar
 

Javid, A. M., Venkitaraman, A., Skoglund, M. & Chatterjee, S. High-dimensional neural feature design for layer-wise reduction of training cost. EURASIP J. Adv. Signal Process. 2020, 40 (2020).


Google Scholar
 

Singh, R., Wu, W., Wang, G. & Kalra, M. K. Artificial intelligence in image reconstruction: the change is here. Phys. Med. 79, 113–125 (2020).


Google Scholar
 

Shen, L., Zhao, W. & Xing, L. Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat. Biomed. Eng. 3, 880–888 (2019).


Google Scholar
 

Venkadesh, K. V. et al. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT. Radiology 300, 438–447 (2021).


Google Scholar
 

Kniep, H. C. et al. Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology 290, 479–487 (2019).


Google Scholar
 

Fan, S. et al. Computed tomography-based radiomic features could potentially predict microsatellite instability status in stage II colorectal cancer: a preliminary study. Acad. Radiol. 26, 1633–1640 (2019).


Google Scholar
 

Tseng, L. J., Matsuyama, A. & MacDonald-Dickinson, V. Histology: the gold standard for diagnosis? Can. Vet. J. 64, 389–391 (2023).


Google Scholar
 

Aljehani, M. R. et al. The importance of histopathological evaluation in cancer diagnosis and treatment. Int. J. Health Sci. 7, 3614–3623 (2023).


Google Scholar
 

Yang, Z. et al. A foundation model for generalizable cancer diagnosis and survival prediction from histopathological images. Nat. Commun. 16, 2366 (2025).


Google Scholar
 

Singh, N. N., Tandon, A. & Jayasankar, P. Strength, weakness, opportunities and challenges (SWOC) experience of histopathology image analysis, enhanced by artificial intelligence. J. Oral. Biol. Craniofacial Res. 15, 1057–1063 (2025).


Google Scholar
 

Fatima, G. et al. Transforming diagnostics: a comprehensive review of advances in digital pathology. Cureus 16, e71890 (2024).


Google Scholar
 

Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).


Google Scholar
 

Viswanathan, V. S., Toro, P., Corredor, G., Mukhopadhyay, S. & Madabhushi, A. The state of the art for artificial intelligence in lung digital pathology. J. Pathol. 257, 413–429 (2022).


Google Scholar
 

Eloy, C. et al. Artificial intelligence-assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies. Virchows Arch 482, 595–604 (2023).


Google Scholar
 

Wong, A. N. N. et al. Current developments of artificial intelligence in digital pathology and its future clinical applications in gastrointestinal cancers. Cancers (Basel) 14, 3780 (2022).


Google Scholar
 

Salvi, M., Acharya, U. R., Molinari, F. & Meiburger, K. M. The impact of pre- and post-image processing techniques on deep learning frameworks: a comprehensive review for digital pathology image analysis. Comput. Biol. Med. 128, 104129 (2021).


Google Scholar
 

Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017).


Google Scholar
 

Oiseth, S. J. & Aziz, M. S. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 3, 250–61 (2017).


Google Scholar
 

Sirinukunwattana, K. et al. Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017).


Google Scholar
 

Liu, Y. et al. Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:170302442 (2017).

Wang, H. et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J. Med. Imaging (Bellingham) 1, 034003 (2014).


Google Scholar
 

Soliman, A., Li, Z. & Parwani, A. V. Artificial intelligence’s impact on breast cancer pathology: a literature review. Diagn. Pathol. 19, 38 (2024).


Google Scholar
 

Sandbank, J. et al. Validation and real-world clinical application of an artificial intelligence algorithm for breast cancer detection in biopsies. NPJ Breast Cancer 8, 129 (2022).


Google Scholar
 

Pannala, R. et al. Artificial intelligence in gastrointestinal endoscopy. VideoGIE 5, 598–613 (2020).


Google Scholar
 

Wang, Y. et al. Improved breast cancer histological grading using deep learning. Ann. Oncol. 33, 89–98 (2022).


Google Scholar
 

Mantrala, S. et al. Concordance in breast cancer grading by artificial intelligence on whole slide images compares with a multi-institutional cohort of breast pathologists. Arch. Pathol. Lab. Med. 146, 1369–1377 (2022).


Google Scholar
 

Tian, Y. et al. What makes for good views for contrastive learning? Advances in Neural Information Processing Systems 33, 6827–6839 (2020).


Google Scholar
 

Abdulrazzaq, M. M. et al. Consequential advancements of self-supervised learning (SSL) in deep learning contexts. Mathematics 12, 758 (2024).


Google Scholar
 

Espis, A., Marzi, C. & Diciotti, S. Comparative analysis of supervised and self-supervised learning with small and imbalanced medical imaging datasets. Sci. Rep. 15, 32345 (2025).


Google Scholar
 

Richter, T., Bahrami, M., Xia, Y., Fischer, D. S. & Theis, F. J. Delineating the effective use of self-supervised learning in single-cell genomics. Nat. Mach. Intell. 7, 68–78 (2025).


Google Scholar
 

Penarrubia, C., Valero-Mas, J. J. & Calvo-Zaragoza, J. Self-supervised learning for text recognition: a critical survey. Int. J. Comput. Vis. 133, 6221–6250 (2025).


Google Scholar
 

Zhang, X. & Han, L. A generic self-supervised learning (SSL) framework for representation learning from spectral–spatial features of unlabeled remote sensing imagery. Remote Sens 15, 5238 (2023).


Google Scholar
 

Ciga, O., Xu, T. & Martel, A. L. Self supervised contrastive learning for digital histopathology. Mach. Learn. Appl. 7, 100198 (2022).


Google Scholar
 

Kang, X., Li, D. & Sun, R. Nanotechnology and natural killer cell immunotherapy: synergistic approaches for precise immune system adjustment and targeted cancer treatment in gastrointestinal tumors. Front. Med. (Lausanne) 12, 1647737 (2025).


Google Scholar
 

Ashraf, F. B., Alam, S. M. & Sakib, S. M. Enhancing breast cancer classification via histopathological image analysis: leveraging self-supervised contrastive learning and transfer learning. Heliyon 10, e24094 (2024).


Google Scholar
 

Hu, A. et al. The diagnosis and management of small and indeterminate lymph nodes in papillary thyroid cancer: preoperatively and intraoperatively. Front. Endocrinol. (Lausanne) 15, 1484838 (2024).


Google Scholar
 

Tang, Q. et al. Preoperative MRI and CA19-9 for predicting occult lymph node metastasis in small pancreatic ductal adenocarcinoma (≤2 cm). BMC Med. Imaging 25, 318 (2025).


Google Scholar
 

Huang, S. C. et al. Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings. Nat. Commun. 13, 3347 (2022).


Google Scholar
 

Wang, R., Gu, Y., Zhang, T. & Yang, J. Fast cancer metastasis location based on dual magnification hard example mining network in whole-slide images. Comput. Biol. Med. 158, 106880 (2023).


Google Scholar
 

Challa, B. et al. Artificial intelligence-aided diagnosis of breast cancer lymph node metastasis on histologic slides in a digital workflow. Mod. Pathol. 36, 100216 (2023).


Google Scholar
 

Caldonazzi, N. et al. Value of artificial intelligence in evaluating lymph node metastases. Cancers (Basel) 15, 2491 (2023).


Google Scholar
 

Steiner, D. F. et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am. J. Surg. Pathol. 42, 1636–1646 (2018).


Google Scholar
 

Liu, Y. et al. Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch. Pathol. Lab. Med. 143, 859–868 (2019).


Google Scholar
 

Bándi, P. et al. Continual learning strategies for cancer-independent detection of lymph node metastases. Med. Image Anal. 85, 102755 (2023).


Google Scholar
 

Bhinder, B., Gilvary, C., Madhukar, N. S. & Elemento, O. Artificial intelligence in cancer research and precision medicine. Cancer Discov 11, 900–915 (2021).


Google Scholar
 

Satam, H. et al. Next-generation sequencing technology: current trends and advancements. Biology (Basel) 12, (2023).

Sahoo, O. S. et al. Role of next-generation sequencing in revolutionizing healthcare for cancer management. MedComm–Future Med. 3, e70001 (2024).


Google Scholar
 

Vashisht, V., Vashisht, A., Mondal, A. K., Woodall, J. & Kolhe, R. From genomic exploration to personalized treatment: next-generation sequencing in oncology. Current Issues Mol. Biol 46, 12527–12549 (2024).


Google Scholar
 

Yap, T. A., Stadler, Z. K., Stout, L. A. & Schneider, B. P. Aligning germline cancer predisposition with tumor-based next-generation sequencing for modern oncology diagnosis, interception, and therapeutic development. Am. Soc. Clin. Oncol. Educ. Book 43, e390738 (2023).


Google Scholar
 

Fang, Y. et al. Systematic Investigation of Tumor Microenvironment and Antitumor Immunity With IOBR. Med Research 1, 136–140 (2025).


Google Scholar
 

Zhang, J., Li, H., Tao, W. & Zhou, J. GseaVis: An R Package for Enhanced Visualization of Gene Set Enrichment Analysis in Biomedicine. Med Research 1, 131–135 (2025).


Google Scholar
 

Djuric, U., Zadeh, G., Aldape, K. & Diamandis, P. Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care. NPJ Precis. Oncol. 1, 22 (2017).


Google Scholar
 

Andre, F. et al. Genomics to select treatment for patients with metastatic breast cancer. Nature 610, 343–348 (2022).


Google Scholar
 

Kato, S. et al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy. Nat. Commun. 11, 4965 (2020).


Google Scholar
 

Chen, C. et al. Applications of multi-omics analysis in human diseases. MedComm 4, e315 (2023). (2020).


Google Scholar
 

Correa-Aguila, R., Alonso-Pupo, N. & Hernández-Rodríguez, E. W. Multi-omics data integration approaches for precision oncology. Mol. Omics 18, 469–479 (2022).


Google Scholar
 

Escaramís, G., Docampo, E. & Rabionet, R. A decade of structural variants: description, history and methods to detect structural variation. Brief. Funct. Genom. 14, 305–314 (2015).


Google Scholar
 

Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).


Google Scholar
 

Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the sequencing era. Nat. Rev. Genet. 21, 171–189 (2020).


Google Scholar
 

Pös, O. et al. Copy number variation: methods and clinical applications. Appl. Sci. 11, 819 (2021).


Google Scholar
 

Kosugi, S. & Terao, C. Comparative evaluation of SNVs, indels, and structural variations detected with short- and long-read sequencing data. Hum. Genome Var. 11, 18 (2024).


Google Scholar
 

Yang, L. A practical guide for structural variation detection in the human genome. Curr. Protoc. Hum. Genet. 107, e103 (2020).


Google Scholar
 

Mahmoud, M. et al. Structural variant calling: the long and the short of it. Genome Biol 20, 246 (2019).


Google Scholar
 

Ferlaino, M. et al. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome. BMC Bioinform 18, 442 (2017).


Google Scholar
 

Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).


Google Scholar
 

Horak, P. et al. Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): Joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet. Med. 24, 986–998 (2022).


Google Scholar
 

Sessa, C. et al. Risk reduction and screening of cancer in hereditary breast-ovarian cancer syndromes: ESMO Clinical Practice Guideline. Ann. Oncol. 34, 33–47 (2023).


Google Scholar
 

Calabrese, A., Von Arx, C., Tafuti, A., Pensabene, M. & De Laurentiis, M. Prevention, diagnosis and clinical management of hereditary breast cancer beyond BRCA1/2 genes. Cancer Treat. Rev. 129, 102785 (2024).


Google Scholar
 

Chandrashekar, P. et al. Somatic selection distinguishes oncogenes and tumor suppressor genes. Bioinformatics 36, 1712–1717 (2020).


Google Scholar
 

Dakal, T. C. et al. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm 5, e582 (2024). (2020).


Google Scholar
 

Singh, S. R. et al. Exploring the genetic orchestra of cancer: the interplay between oncogenes and tumor-suppressor genes. Cancer 17, 1082 (2025).


Google Scholar
 

Schon, K. & Tischkowitz, M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res. Treat. 167, 417–423 (2018).


Google Scholar
 

Shah, S. A. et al. Explainable AI-based skin cancer detection using CNN, particle swarm optimization and machine learning. J. Imaging 10, 332 (2024).


Google Scholar
 

Vilhekar, R. S. & Rawekar, A. Artificial Intelligence in Genetics. Cureus 16, e52035 (2024).


Google Scholar
 

Ashayeri, H. et al. Transfer learning in cancer genetics, mutation detection, gene expression analysis, and syndrome recognition. Cancers (Basel) 16, 2138 (2024).


Google Scholar
 

Tiwari, A., Mishra, S. & Kuo, T.-R. Current AI technologies in cancer diagnostics and treatment. Mol. Cancer 24, 159 (2025).


Google Scholar
 

Liu, Q. & Hu, P. Extendable and explainable deep learning for pan-cancer radiogenomics research. Curr. Opin. Chem. Biol. 66, 102111 (2022).


Google Scholar
 

Qi, Y., Zhao, T. & Han, M. The application of radiomics in predicting gene mutations in cancer. Eur. Radiol. 32, 4014–4024 (2022).


Google Scholar
 

Bodalal, Z., Trebeschi, S., Nguyen-Kim, T. D. L., Schats, W. & Beets-Tan, R. Radiogenomics: bridging imaging and genomics. Abdom. Radiol. 44, 1960–1984 (2019).


Google Scholar
 

Alam, M. R. et al. Recent applications of artificial intelligence from histopathologic image-based prediction of microsatellite instability in solid cancers: a systematic review. Cancers 14, 2590 (2022).


Google Scholar
 

Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).


Google Scholar
 

Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).


Google Scholar
 

Oh, J. M. et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat. Commun. 11, 1 (2020).


Google Scholar
 

Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).


Google Scholar
 

Yu, B. H. et al. The clinicopathological relevance of uniform CD56 expression in anaplastic large cell lymphoma: a retrospective analysis of 18 cases. Diagn. Pathol. 16, 1 (2021).


Google Scholar
 

Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).


Google Scholar
 

Moore, G. W. K., Howell, S. E. L., Brady, M., Xu, X. & McNeil, K. Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice. Nat. Commun. 12, 1 (2021).


Google Scholar
 

Sirinukunwattana, K. et al. Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut 70, 544–554 (2021).


Google Scholar
 

Skrede, O. J. et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 395, 350–360 (2020).


Google Scholar
 

Chong, Y. et al. Recommendations for pathologic practice using digital pathology: consensus report of the Korean Society of Pathologists. J. Pathol. Transl. Med. 54, 437–452 (2020).


Google Scholar
 

Štorkánová, H. et al. Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study. Sci. Rep. 11, 1 (2021).


Google Scholar
 

Waarts, M. R., Stonestrom, A. J., Park, Y. C. & Levine, R. L. Targeting mutations in cancer. J. Clin. Investig. 132, e154943 (2022).


Google Scholar
 

Mendiratta, G. et al. Cancer gene mutation frequencies for the U.S. population. Nat. Commun. 12, 5961 (2021).


Google Scholar
 

Kafieh, R. Artificial Intelligence in Cancer, Biology and Oncology (MDPI—Multidisciplinary Digital Publishing Institute, 2024).

Shao, X. et al. Transfer learning-based PET/CT three-dimensional convolutional neural network fusion of image and clinical information for prediction of EGFR mutation in lung adenocarcinoma. BMC Med. Imaging 24, 54 (2024).


Google Scholar
 

Dammak, S., Cecchini, M. J., Breadner, D. & Ward, A. D. Using deep learning to predict tumor mutational burden from scans of H&E-stained multicenter slides of lung squamous cell carcinoma. J. Med. Imaging 10, 017502 (2023).


Google Scholar
 

Liang, C. W., Fang, P. W., Huang, H. Y. & Lo, C. M. Deep convolutional neural networks detect tumor genotype from pathological tissue images in gastrointestinal stromal tumors. Cancers 13, 5787 (2021).


Google Scholar
 

Cao, R. et al. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in colorectal cancer. Theranostics 10, 11080–11091 (2020).


Google Scholar
 

Su, Y. et al. Application of BERT to enable gene classification based on clinical evidence. BioMed. Res. Int. 2020, 5491963 (2020).


Google Scholar
 

Aburass, S., Dorgham, O. & Al Shaqsi, J. A hybrid machine learning model for classifying gene mutations in cancer using LSTM, BiLSTM, CNN, GRU, and GloVe. Syst. Soft Comput. 6, 200110 (2024).


Google Scholar
 

Sun, Y. et al. Identification of 12 cancer types through genome deep learning. Sci. Rep. 9, 17256 (2019).


Google Scholar
 

Zhang, S. et al. Improvement in prediction of prostate cancer prognosis with somatic mutational signatures. J. Cancer 8, 3261–3267 (2017).


Google Scholar
 

Shiao, S. P. K., Grayson, J., Lie, A. & Yu, C. H. Personalized nutrition—genes, diet, and related interactive parameters as predictors of cancer in multiethnic colorectal cancer families. Nutrients 10, 795 (2018).


Google Scholar
 

Hui, X. et al. EBT: a statistic test identifying moderate size of significant features with balanced power and precision for genome-wide rate comparisons. Bioinformatics 33, 2631–2641 (2017).


Google Scholar
 

Cho, H.-J., Lee, S., Ji, Y. G. & Lee, D. H. Association of specific gene mutations derived from machine learning with survival in lung adenocarcinoma. PLoS ONE 13, e0207204 (2018).


Google Scholar
 

Farina, E., Nabhen, J. J., Dacoregio, M. I., Batalini, F. & Moraes, F. Y. An overview of artificial intelligence in oncology. Futur. Sci. OA 8, Fso787 (2022).


Google Scholar
 

Passaro, A. et al. Cancer biomarkers: emerging trends and clinical implications for personalized treatment. Cell 187, 1617–1635 (2024).


Google Scholar
 

Tufail, M., Jiang, C.-H. & Li, N. Wnt signaling in cancer: from biomarkers to targeted therapies and clinical translation. Mol. Cancer 24, 107 (2025).


Google Scholar
 

Forghani, R. Precision digital oncology: emerging role of radiomics-based biomarkers and artificial intelligence for advanced imaging and characterization of brain tumors. Radiol. Imaging Cancer 2, e190047 (2020).


Google Scholar
 

Chiu, F.-Y. & Yen, Y. Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives. Biomark. Res. 11, 35 (2023).


Google Scholar
 

Chen, M. M. et al. Artificial intelligence in oncologic imaging. Eur. J. Radiol. Open 9, 100441 (2022).


Google Scholar
 

Pandey, P., Mayank, K. & Sharma, S. (eds) Bio-Marker Cancer Prediction System Using Artificial Intelligence. 2023 International Conference on Integration of Computational Intelligent System (ICICIS), 1–4 November 2023 (2023).

Quddusi, D. M. & Bajcinca, N. Identification of genomic biomarkers and their pathway crosstalks for deciphering mechanistic links in glioblastoma. IET Syst. Biol. 17, 143–161 (2023).


Google Scholar
 

Liu, Y. H., Jin, H. Q. & Liu, H. P. Identification of T-cell exhaustion-related gene signature for predicting prognosis in glioblastoma multiforme. J. Cell. Mol. Med. 27, 3503–3513 (2023).


Google Scholar
 

Zhou, J., Zeng, Z. Y. & Li, L. Progress of artificial intelligence in gynecological malignant tumors. Cancer Manag. Res. 12, 12823–12840 (2020).


Google Scholar
 

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. & Fotiadis, D. I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015).


Google Scholar
 

Kawakami, E. et al. Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers. Clin. Cancer Res. 25, 3006–3015 (2019).


Google Scholar
 

Lv, J., Liu, G., Dong, W., Ju, Y. & Sun, Y. ACDB: An Antibiotic Combination DataBase. Front. Pharm. 13, 869983 (2022).


Google Scholar
 

Sarvepalli, S. & Vadarevu, S. Role of artificial intelligence in cancer drug discovery and development. Cancer Lett 627, 217821 (2025).


Google Scholar
 

Bassey, G. E., Daniel, E. A., Okesina, K. B. & Odetayo, A. F. Transformative role of artificial intelligence in drug discovery and translational medicine: innovations, challenges, and future prospects. Drug Des. Dev. Ther. 19, 7493–7502 (2025).


Google Scholar
 

Long, X. et al. Artificial intelligence and anti-cancer drugs’ response. Acta Pharm. Sin. B 15, 3355–3371 (2025).


Google Scholar
 

Abou Hajal, A. & Al Meslamani, A. Z. Insights into artificial intelligence utilisation in drug discovery. J. Med. Econ. 27, 304–308 (2024).


Google Scholar
 

Serrano, D. R. et al. Artificial intelligence (AI) applications in drug discovery and drug delivery: revolutionizing personalized medicine. Pharmaceutics 16, 1328 (2024).


Google Scholar
 

Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).


Google Scholar
 

Lin, Q., Tam, P. K. & Tang, C. S. Artificial intelligence-based approaches for the detection and prioritization of genomic mutations in congenital surgical diseases. Front. Pediatr. 11, 1203289 (2023).


Google Scholar
 

Chen, W., Liu, X., Zhang, S. & Chen, S. Artificial intelligence for drug discovery: resources, methods, and applications. Mol. Ther. Nucleic Acids 31, 691–702 (2023).


Google Scholar
 

Qiu, X., Li, H., Ver Steeg, G. & Godzik, A. Advances in AI for protein structure prediction: implications for cancer drug discovery and development. Biomolecules 14, 339 (2024).


Google Scholar
 

Knox, C. et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res 52, D1265–D1275 (2024).


Google Scholar
 

Lv, J., Liu, G., Ju, Y., Huang, H. & Sun, Y. AADB: a manually collected database for combinations of antibiotics with adjuvants. IEEE/ACM Trans. Comput. Biol. Bioinform. 20, 2827–2836 (2023).


Google Scholar
 

Kim, S. et al. PubChem 2025 update. Nucleic Acids Res 53, D1516–d25 (2025).


Google Scholar
 

Fahimian, G., Zahiri, J., Arab, S. S. & Sajedi, R. H. RepCOOL: computational drug repositioning via integrating heterogeneous biological networks. J. Transl. Med. 18, 375 (2020).


Google Scholar
 

Wang, Y. et al. Discovery of novel glycogen synthase kinase-3α inhibitors: structure-based virtual screening, preliminary SAR and biological evaluation for treatment of acute myeloid leukemia. Eur. J. Med. Chem. 171, 221–234 (2019).


Google Scholar
 

Gupta, R. et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers. 25, 1315–1360 (2021).


Google Scholar
 

Dueñas, M. E. et al. Advances in high-throughput mass spectrometry in drug discovery. EMBO Mol. Med. 15, e14850 (2023).


Google Scholar
 

Yin, Q. et al. DeepDrug: a general graph-based deep learning framework for drug–drug interactions and drug–target interactions prediction. Quant. Biol. 11, 260–274 (2023).


Google Scholar
 

Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).


Google Scholar
 

Qu, X., Du, G., Hu, J. & Cai, Y. Graph-DTI: a new model for drug-target interaction prediction based on heterogenous network graph embedding. Curr. Comput.-Aided Drug Des. 20, 1013–1024 (2024).


Google Scholar
 

Yu, L. et al. HGDTI: predicting drug-target interaction by using information aggregation based on heterogeneous graph neural network. BMC Bioinform 23, 126 (2022).


Google Scholar
 

Yang, K., Bai, H., Ouyang, Q., Lai, L. & Tang, C. Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol. 4, 228 (2008).


Google Scholar
 

Cheng, F. et al. Prediction of drug–target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8, e1002503 (2012).


Google Scholar
 

Campillos, M., Kuhn, M., Gavin, A.-C., Jensen, L. J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 263–266 (2008).


Google Scholar
 

Tian, Z. et al. MHADTI: predicting drug–target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms. Brief. Bioinform. 23, bbac434 (2022).


Google Scholar
 

Sadaqat, M. et al. Advanced network pharmacology study reveals multi-pathway and multi-gene regulatory molecular mechanism of Bacopa monnieri in liver cancer based on data mining, molecular modeling, and microarray data analysis. Comput. Biol. Med. 161, 107059 (2023).


Google Scholar
 

Emmerich, C. H. et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Discov. 20, 64–81 (2021).


Google Scholar
 

Kiriiri, G., Njogu, P. & Mwangi, A. Exploring different approaches to improve the success of drug discovery and development projects: a review. Future J. Pharm. Sci. 6, 1–12 (2020).


Google Scholar
 

Tran, N. L., Kim, H., Shin, C. H., Ko, E. & Oh, S. J. Artificial intelligence-driven new drug discovery targeting serine/threonine kinase 33 for cancer treatment. Cancer Cell Int 23, 321 (2023).


Google Scholar
 

Albani, F. G., Alghamdi, S. S., Almutairi, M. M. & Alqahtani, T. Artificial intelligence-driven innovations in oncology drug discovery: transforming traditional pipelines and enhancing drug design. Drug Des. Dev. Ther. 19, 5685–5707 (2025).


Google Scholar
 

Fang, X. et al. Chromosome instability functions as a potential therapeutic reference by enhancing chemosensitivity to BCL-XL inhibitors in colorectal carcinoma. Acta Pharmacol. Sin. 45, 2420–2431 (2024).


Google Scholar
 

Zhang, Z. et al. Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med 14, 45 (2022).


Google Scholar
 

Wen, T. et al. A Deep Learning Approach to Discover Cyclin-dependent Kinases 12 (CDK12) Inhibitors in Breast Cancer (American Society of Clinical Oncology, 2022).

Huang, A., Garraway, L. A., Ashworth, A. & Weber, B. Synthetic lethality as an engine for cancer drug target discovery. Nat. Rev. Drug Discov. 19, 23–38 (2020).


Google Scholar
 

Wang, S. et al. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers. Bioinformatics 37, i418–i425 (2021).


Google Scholar
 

Sheng, C., Dong, G., Miao, Z., Zhang, W. & Wang, W. State-of-the-art strategies for targeting protein–protein interactions by small-molecule inhibitors. Chem. Soc. Rev. 44, 8238–8259 (2015).


Google Scholar
 

Lu, C. et al. Systemic evolutionary chemical space exploration for drug discovery. J. Cheminform. 14, 19 (2022).


Google Scholar
 

Yasuo, N. & Sekijima, M. Improved method of structure-based virtual screening via interaction-energy-based learning. J. Chem. Inf. Model. 59, 1050–1061 (2019).


Google Scholar
 

Singh, S., Gupta, H., Sharma, P. & Sahi, S. Advances in artificial intelligence (AI)-assisted approaches in drug screening. Artif. Intell. Chem. 2, 100039 (2024).


Google Scholar
 

Raies, A. et al. DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets. Commun. Biol. 5, 1291 (2022).


Google Scholar
 

Bailleux, C., Gal, J., Chamorey, E., Mograbi, B. & Milano, G. Artificial intelligence and anticancer drug development—keep a cool head. Pharmaceutics 16, 211 (2024).


Google Scholar
 

Chow, R. et al. Use of artificial intelligence for cancer clinical trial enrollment: a systematic review and meta-analysis. J. Natl. Cancer Inst. 115, 365–374 (2023).


Google Scholar
 

Azenkot, T., Rivera, D. R., Stewart, M. D. & Patel, S. P. Artificial intelligence and machine learning innovations to improve design and representativeness in oncology clinical trials. Am. Soc. Clin. Oncol. Educ. Book 45, e473590 (2025).


Google Scholar
 

Cai, L. et al. Machine learning to predict the individual risk of treatment-relevant toxicity for patients with breast cancer undergoing neoadjuvant systemic treatment. JCO Clin. Cancer Inform 8, e2400010 (2024).


Google Scholar
 

Stabellini, N. et al. Thirty-day unplanned hospital readmissions in patients with cancer and the impact of social determinants of health: a machine learning approach. JCO Clin. Cancer Inform 7, e2200143 (2023).


Google Scholar
 

Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495–496 (2019).


Google Scholar
 

Hu, Y. et al. In silico prediction of human organ toxicity via artificial intelligence methods. Chem. Res. Toxicol. 36, 1044–1054 (2023).


Google Scholar
 

Liu, R. et al. Evaluating eligibility criteria of oncology trials using real-world data and AI. Nature 592, 629–633 (2021).


Google Scholar
 

Zhan, Y., Hao, Y., Wang, X. & Guo, D. Advances of artificial intelligence in clinical application and scientific research of neuro-oncology: current knowledge and future perspectives. Crit. Rev. Oncol./Hematol. 209, 104682 (2025).


Google Scholar
 

Zhao, X., Xiong, J., Li, D. & Zhang, Y. Clinical trials of nanoparticle-enhanced CAR-T and NK cell therapies in oncology: overcoming translational and clinical challenges – a mini review. Front Med (Lausanne) 12, 1655693 (2025).


Google Scholar
 

Chopra et al. Revolutionizing clinical trials: the role of AI in accelerating medical breakthroughs. Int J. Surg. 109, 4211–4220 (2023).


Google Scholar
 

Chong, P. L. et al. Integrating artificial intelligence in healthcare: applications, challenges, and future directions. Future Sci. OA 11, 2527505 (2025).


Google Scholar
 

Moon, H., Nguyen, P. N., Park, J., Lee, M. & Ahn, S. AI-guided chemotherapy optimization in lung cancer using genomic and survival data. J. Pers. Med. 15, 218 (2025).


Google Scholar
 

Liao, J. et al. Artificial intelligence assists precision medicine in cancer treatment. Front. Oncol. 12, 998222 (2022).


Google Scholar
 

AlSamhori, J. F. et al. Artificial intelligence for breast cancer: implications for diagnosis and management. J. Med. Surg. Public Health 3, 100120 (2024).


Google Scholar
 

Wilhelm, C., Steckelberg, A. & Rebitschek, F. G. Benefits and harms associated with the use of AI-related algorithmic decision-making systems by healthcare professionals: a systematic review. Lancet Reg. Health—Eur 48, 101145 (2025).


Google Scholar
 

Singh, Y. et al. Beyond the hype: navigating bias in AI-driven cancer detection. Oncotarget 15, 764–766 (2024).


Google Scholar
 

Morales-Forero, A., Rueda, L. J., Herrera, R., Bassetto, S. & Coatanea, E. Predictive representativity: uncovering racial bias in AI-based skin cancer detection. arXiv preprint arXiv:250714176 (2025).

Ganta, T. et al. Fairness in predicting cancer mortality across racial subgroups. JAMA Netw. Open 7, e2421290 (2024).


Google Scholar
 

Preetam, S. et al. Next-gen diagnostics: artificial intelligence-powered imaging in breast cancer care. J Cancer Metastasis Treat 11, 29 (2025).


Google Scholar
 

Derraz, B. et al. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. npj Precis. Oncol. 8, 23 (2024).


Google Scholar
 

Chan, J., Parker, L., Carter, S., Nickel, B. & Carroll, S. Radiation oncology patients’ perceptions of artificial intelligence and machine learning in cancer care: a multi-centre cross-sectional study. Radiother. Oncol. 207, 110891 (2025).


Google Scholar
 

Chamouni, G. et al. Ethical and legal concerns in artificial intelligence applications for the diagnosis and treatment of lung cancer: a scoping review. Front. Public Health 13, 1663298 (2025).


Google Scholar
 

Collins, G. S. et al. Clinical prediction models using machine learning in oncology: challenges and recommendations. BMJ Oncol 4, e000914 (2025).


Google Scholar
 

Adeoye, J., Akinshipo, A., Koohi-Moghadam, M., Thomson, P. & Su, Y. X. Construction of machine learning-based models for cancer outcomes in low and lower-middle income countries: a scoping review. Front. Oncol. 12, 976168 (2022).


Google Scholar
 

Hogg, H. D. J. et al. Stakeholder perspectives of clinical artificial intelligence implementation: systematic review of qualitative evidence. J. Med. Internet Res. 25, e39742 (2023).


Google Scholar
 

Yun, T. & Zhang, L. International partnerships in AI-driven healthcare: opportunities and challenges for advancing the UN Sustainable Development Goals—a perspective. Healthcare 13, 2053 (2025).


Google Scholar
 

Roppelt, J. S., Kanbach, D. K. & Kraus, S. Artificial intelligence in healthcare institutions: a systematic literature review on influencing factors. Technol. Soc. 76, 102443 (2024).


Google Scholar
 

Maleki Varnosfaderani, S. & Forouzanfar, M. The role of AI in hospitals and clinics: transforming healthcare in the 21st century. Bioengineering 11, 337 (2024).


Google Scholar
 

Goh, S. et al. Challenges in implementing artificial intelligence in breast cancer screening programs: systematic review and framework for safe adoption. J. Med. Internet Res. 27, e62941 (2025).


Google Scholar
 

Hutter, C. & Zenklusen, J. C. The Cancer Genome Atlas: creating lasting value beyond its data. Cell 173, 283–285 (2018).


Google Scholar
 

Aldoseri, A., Al-Khalifa, K. N. & Hamouda, A. M. Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges. Appl. Sci. 13, 7082 (2023).


Google Scholar
 

Saxena, S. et al. Role of artificial intelligence in radiogenomics for cancers in the era of precision medicine. Cancers (Basel) 14, 2860 (2022).


Google Scholar
 

Uwimana, A., Gnecco, G. & Riccaboni, M. Artificial intelligence for breast cancer detection and its health technology assessment: a scoping review. Comput. Biol. Med. 184, 109391 (2025).


Google Scholar