Jain, P. et al. Drivers and impacts of the record-breaking 2023 wildfire season in Canada. Nat. Commun. 15, 6764 (2024).

CAS 

Google Scholar
 

Canadian Interagency Forest Fire Centre. CIFFC | Situation Reports. https://ciffc.net/situation/archive.

Boulanger, Y. et al. The 2023 wildfire season in Québec: an overview of extreme conditions, impacts, lessons learned and considerations for the future. Can. J. Res. https://doi.org/10.1139/cjfr-2023-0298 (2024).

Chen, J., Chen, W., Liu, J., Cihlar, J. & Gray, S. Annual carbon balance of Canada’s forests during 1895–1996. Glob. Biogeochem. Cycles 14, 839–849 (2000).

CAS 

Google Scholar
 

Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl Acad. Sci. USA. 105, 1551–1555 (2008).

CAS 

Google Scholar
 

Black, C., Tesfaigzi, Y., Bassein, J. A. & Miller, L. A. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue. Environ. Toxicol. Pharmacol. 55, 186–195 (2017).

CAS 

Google Scholar
 

Matz, C. J. et al. Health impact analysis of PM2.5 from wildfire smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 725, 138506 (2020).

CAS 

Google Scholar
 

Zhao, B. et al. North American boreal forests are a large carbon source due to wildfires from 1986 to 2016. Sci. Rep. 11, 7723 (2021).

CAS 

Google Scholar
 

Van Wagner, C. E. Development and Structure of the Canadian Fire Weather Index System. Forestry Technical Report 35 (Canadian Forestry Service, Ottawa, 1987).

Wagner, C. E. V. Conditions for the start and spread of crown fire. Can. J. Res. 7, 23–34 (1977).


Google Scholar
 

Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).

CAS 

Google Scholar
 

Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).


Google Scholar
 

Wang, X. et al. Projected changes in daily fire spread across Canada over the next century. Environ. Res. Lett. 12, 025005 (2017).


Google Scholar
 

Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).


Google Scholar
 

Hanes, C. C. et al. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 49, 256–269 (2019).


Google Scholar
 

Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31, L18211 (2004).


Google Scholar
 

Turco, M. et al. Anthropogenic climate change impacts exacerbate summer forest fires in California. Proc. Natl Acad. Sci. 120, e2213815120 (2023).

CAS 

Google Scholar
 

Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).

CAS 

Google Scholar
 

Whitman, E., Parks, S. A., Holsinger, L. M. & Parisien, M.-A. Climate-induced fire regime amplification in Alberta, Canada. Environ. Res. Lett. 17, 055003 (2022).


Google Scholar
 

Parisien, M. A. et al. Abrupt, climate-induced increase in wildfires in British Columbia since the mid-2000s. Commun. Earth Environ. 4, 1–11 (2023).

Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. J. Future area burned in Canada. Climatic Change 72, 1–16 (2005).

CAS 

Google Scholar
 

Boulanger, Y., Gauthier, S. & Burton, P. J. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can. J. For. Res. 44, 365–376 (2014).

CAS 

Google Scholar
 

Tymstra, C., Stocks, B. J., Cai, X. & Flannigan, M. D. Wildfire management in Canada: Review, challenges and opportunities. Prog. Disaster Sci. 5, 100045 (2020).


Google Scholar
 

Christianson, A. C. et al. Centering indigenous voices: the role of fire in the boreal forest of North America. Curr. Forestry Rep. 8, 257–276 (2022).


Google Scholar
 

Kirchmeier-Young, M. C., Zwiers, F. W., Gillett, N. P. & Cannon, A. J. Attributing extreme fire risk in Western Canada to human emissions. Climatic Change 144, 365–379 (2017).


Google Scholar
 

Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human‐induced climate change on an extreme fire season. Earth’s Future 7, 2–10 (2019).

CAS 

Google Scholar
 

Hawkins, L. R., Abatzoglou, J. T., Li, S. & Rupp, D. E. Anthropogenic influence on recent severe autumn fire weather in the west coast of the United States. Geophys. Res. Lett. 49, 1–11 (2022).

Li, S. et al. Anthropogenic climate change contribution to wildfire-prone weather conditions in the Cerrado and Arc of deforestation. Environ. Res. Lett. 16, 094051 (2021).


Google Scholar
 

Du, J., Wang, K. & Cui, B. Attribution of the extreme drought-related risk of wildfires in spring 2019 over Southwest China. Bull. Am. Meteorological Soc. 102, S83–S90 (2021).


Google Scholar
 

Krikken, F., Lehner, F., Haustein, K., Drobyshev, I. & van Oldenborgh, G. J. Attribution of the role of climate change in the forest fires in Sweden 2018. Nat. Hazards Earth Syst. Sci. 21, 2169–2179 (2021).


Google Scholar
 

Van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).

Liu, Z., Eden, J. M., Dieppois, B. & Blackett, M. A global view of observed changes in fire weather extremes: uncertainties and attribution to climate change. Climatic Change 173, 14 (2022).


Google Scholar
 

Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: Experimental and analytical protocols with detailed model descriptions. Geoscientific Model Dev. 10, 1175–1197 (2017).

CAS 

Google Scholar
 

Curasi, S. R. et al. Evaluating the Performance of the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) Tailored to the Pan-Canadian Domain. J. Adv. Modeling Earth Syst. 15, e2022MS003480 (2023).


Google Scholar
 

Wang, X. et al. The potential and realized spread of wildfires across Canada. Glob. Change Biol. 20, 2518–2530 (2014).


Google Scholar
 

Wang, X., Swystun, T., Oliver, J. & Flannigan, M. D. One extreme fire weather event determines the extent and frequency of wildland fires. Environ. Res. Lett. 16, 114031 (2021).


Google Scholar
 

Wang, X. et al. Critical fire weather conditions during active fire spread days in Canada. Sci. Total Environ. 869, 161831 (2023).

CAS 

Google Scholar
 

Ecological Stratification Working Group (ESWG). A National Ecological Framework for Canada. (Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone and Analysis Branch, Ottawa, 1996).

Wotton, B. M. Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ. Ecol. Stat. 16, 107–131 (2009).

CAS 

Google Scholar
 

Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. R. Meteor. Soc. 146, 1999–2049 (2020).


Google Scholar
 

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Dev. 9, 1937–1958 (2016).


Google Scholar
 

Van Vliet, L., Fyke, J., Nakoneczny, S., Murdock, T. Q. & Jafarpur, P. Developing user-informed fire weather projections for Canada. Clim. Serv. 35, 100505 (2024).


Google Scholar
 

Donat, M. G. et al. How Credibly Do CMIP6 simulations capture historical mean and extreme precipitation changes? Geophys. Res. Lett. 50, e2022GL102466 (2023).

CAS 

Google Scholar
 

Jain, P., Sharma, A. R., Acuna, D. C., Abatzoglou, J. T. & Flannigan, M. Record-breaking fire weather in North America in 2021 was initiated by the Pacific northwest heat dome. Commun. Earth Environ. 5, 1–10 (2024).

Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A. & Westerling, A. L. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 48, e2020GL091377 (2021).


Google Scholar
 

Curasi, S. R., Melton, J. R., Arora, V. K., Humphreys, E. R. & Whaley, C. H. Global climate change below 2 °C avoids large end century increases in burned area in Canada. npj Clim. Atmos. Sci. 7, 1–11 (2024).

Amiro, B. D. et al. Direct carbon emissions from Canadian forest fires, 1959-1999. Can. J. Res. 31, 512–525 (2001).

Seneviratne, S. I. et al. Weather and Climate Extreme Events in a Changing Climate. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1513–1766 https://doi.org/10.1017/9781009157896.013 (2021).

United Nations Environment Programme. Emissions Gap Report 2023: Broken Record – Temperatures Hit New Highs, yet World Fails to Cut Emissions (Again). (United Nations Environment Programme, 2023). https://doi.org/10.59117/20.500.11822/43922.

Forster, P. M. et al. Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence. Earth System Science Data. 16, 2625-2658 (2024).

Hély, C., Flannigan, M., Bergeron, Y. & Mcrae, D. Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can. J. For. Res. 31, 430–441 (2001).


Google Scholar
 

Parisien, M.-A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 075005 (2016).


Google Scholar
 

Skakun, R. et al. Extending the national burned area composite time series of wildfires in Canada. Remote Sens. 14, 3050 (2022).

Hersbach, H. et al. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) https://doi.org/10.24381/cds.adbb2d47.

O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Dev. 9, 3461–3482 (2016).


Google Scholar
 

Gillett, N. P. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geoscientific Model Dev. 9, 3685–3697 (2016).


Google Scholar
 

Haarsma, R. J. et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).


Google Scholar
 

Lee, J.-Y. et al. Future Global Climate: Scenario-Based Projections and Near-Term Information. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 553–672 https://doi.org/10.1017/9781009157896.006 (2021).

Cannon, A. J., Alford, H., Shrestha, R. R., Kirchmeier-Young, M. C. & Najafi, M. R. Canadian Large Ensembles Adjusted Dataset version 1 (CanLEADv1): Multivariate bias-corrected climate model outputs for terrestrial modelling and attribution studies in North America. Geosci. Data J. 9, 288–303 (2022).


Google Scholar
 

Bourgault, P. et al. xclim: xarray-based climate data analytics. J. Open Source Softw. 8, 5415 (2023).


Google Scholar
 

Righi, M. et al. Earth System Model Evaluation Tool (ESMValTool) v2.0 – technical overview. Geosci. Model Dev. 13, 1179–1199 (2020).


Google Scholar
 

Eyring, V. et al. Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci. Model Dev. 13, 3383–3438 (2020).

CAS 

Google Scholar
 

Lauer, A. et al. Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth system models in CMIP. Geosci. Model Dev. 13, 4205–4228 (2020).

CAS 

Google Scholar
 

Weigel, K. et al. Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP. Geosci. Model Dev. 14, 3159–3184 (2021).


Google Scholar
 

Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. Forestry Chron. 69, 187–192 (1993).


Google Scholar
 

McElhinny, M., Beckers, J. F., Hanes, C., Flannigan, M. & Jain, P. A high-resolution reanalysis of global fire weather from 1979 to 2018 – overwintering the Drought Code. Earth Syst. Sci. Data 12, 1823–1833 (2020).


Google Scholar
 

Lawson, B. D. & Armitage, O. B. Weather Guide for the Canadian Forest Fire Danger Rating System. Natural Resources Canada. (2008).

Hermosilla, T., Wulder, M. A., White, J. C. & Coops, N. C. Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sens. Environ. 268, 112780 (2022).


Google Scholar
 

Stocks, B. J. et al. Large forest fires in Canada, 1959-1997. J. Geophys. Res. 108, 8149 (2003).

Eyring, V. et al. Human Influence on the Climate System. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 423–552 https://doi.org/10.1017/9781009157896.005 (2021).

Zelinka, M. D. et al. Causes of Higher Climate Sensitivity in CMIP6 Models. Geophys. Res. Lett. 47, e2019GL085782 (2020).


Google Scholar
 

Forster, P. M. et al. Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 15, 2295–2327 (2023).


Google Scholar
 

Tebaldi, C. & Arblaster, J. M. Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Climatic Change 122, 459–471 (2014).

CAS 

Google Scholar
 

Melton, J. R. et al. CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model framework and site-level performance. Geoscientific Model Dev. 13, 2825–2850 (2020).

CAS 

Google Scholar
 

Seiler, C., Melton, J. R., Arora, V. K. & Wang, L. CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 2: Global benchmarking. Geoscientific Model Dev. 14, 2371–2417 (2021).

CAS 

Google Scholar
 

Curasi, S. R., Melton, J. R., Humphreys, E. R., Hermosilla, T. & Wulder, M. A. Implementing a dynamic representation of fire and harvest including subgrid-scale heterogeneity in the tile-based land surface model CLASSIC v1.45. Geoscientific Model Dev. 17, 2683–2704 (2024).


Google Scholar
 

Pan, X. et al. Six global biomass burning emission datasets: intercomparison and application in one global aerosol model. Atmos. Chem. Phys. 20, 969–994 (2020).

CAS 

Google Scholar
 

van der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017).


Google Scholar
 

Kim, H. Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1). https://doi.org/10.20783/DIAS.501 (2017).

Lange, S. WFDE5 over land merged with ERA5 over the ocean (W5E5). GFZ Data Serv. https://doi.org/10.5880/PIK.2019.023 (2019).

Article 

Google Scholar
 

University of East Anglia Climatic Research Unit (CRU) & Harris, I. C. CRU JRA v2.1: A forcings dataset of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data; Jan.1901 – Dec.2019.

Wiedinmyer, C. et al. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 4, 625–641 (2011).


Google Scholar
 

Ichoku, C. & Ellison, L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmos. Chem. Phys. 14, 6643–6667 (2014).


Google Scholar
 

Koster, R. D., Darmenov, A. S. & da Silva, A. M. The Quick Fire Emissions Dataset (QFED): Documentation of Versions 2.1, 2.2 and 2.4. NASA/TM-2015-104606 /Vol. 38. (2015).

Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 170, 121–132 (2015).


Google Scholar