Mohammed, S. S. & Al-Tuwaijari, J. M. Skin disease classification system based on machine learning technique: a Survey. IOP Conf. Ser. Mater. Sci. Eng. 1076 (012045), 1–13 (2021).

MATH 

Google Scholar
 

Al-Tbali, J., Anam, L., Al-Jamrah, K. M. & Abdul Moaen, F. Chickenpox Outbreak Investigation in Assabain District, Sana’a City, Yemen, January to February 2019, Iproceedings, vol. 8, no. 8, pp. 1–2, doi: (2022). https://doi.org/10.2196/36598

Sanjita, S., Azeem, M. & Islamovna, U. G. Survey and outbreak of chicken pox; acknowledgement by med-student, in Proceedings of the 2nd International Scientific and Practical Conference, Brussels, Belgium, pp. 77–82. (2023).

Nasiba, P. & Dildora, B. CHICKENPOX, in Proceedings of International Conference on Scientific Research in Natural and Social Sciences, Toronto, Canada, pp. 202–205. (2023).

Kujur, A., Kiran, K. A. & Kujur, M. An Epidemiological Study of Outbreak Investigation of Chickenpox in remote hamlets of a tribal state in India. Cureus 14 (6), 1–11. https://doi.org/10.7759/cureus.26454 (2022).

Article 

Google Scholar
 

Verma, R., Bairwa, M., Chawla, S., Prinja, S. & Rajput, M. Should Chickenpox vaccine be included in the national immunization schedule in India? Hum. Vaccin. 7 (8), 874–877. https://doi.org/10.4161/hv.7.8.15685 (2011).

Article 
PubMed 

Google Scholar
 

Chovatiya, R. & Silverberg, J. I. Inpatient morbidity and mortality of measles in the United States. PLOS ONE. 15, 1–13. https://doi.org/10.1371/journal.pone.0231329 (2020). no. 4.

Article 
CAS 
MATH 

Google Scholar
 

Rabaan, A. A. et al. Updates on measles incidence and eradication: emphasis on the immunological aspects of Measles infection. Medicina 58, 1–20. https://doi.org/10.3390/medicina58050680 (2022). no. 5.

Article 

Google Scholar
 

Gay, N. J. The theory of Measles Elimination: implications for the design of elimination strategies. J. Infect. Dis. 189, 27–35. https://doi.org/10.1086/381592 (2004).

Article 
MATH 

Google Scholar
 

Thornhill, J. P. et al. Monkeypox Virus infection in humans across 16 countries – April-June 2022. N Engl. J. Med. 387 (8), 679–691. https://doi.org/10.1056/NEJMoa2207323 (2022).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Mitjà, O. et al. Monkeypox, Lancet, vol. 401, no. 10370, pp. 60–74, doi: (2023). https://doi.org/10.1016/S0140-6736(22)02075-X

Shchelkunov, S. N. et al. Analysis of the monkeypox virus genome. Virology 297 (2), 172–194. https://doi.org/10.1006/viro.2002.1446 (2002).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Nguyen, P. Y., Ajisegiri, W., Costantino, V., Chughtai, A. A. & MacIntyre, C. R. Reemergence of human monkeypox and declining Population Immunity in the context of urbanization, Nigeria, 2017–2020. Emerg. Infect. Dis. 27 (4), 1007–1014 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Doucleff, M. The spread of monkeypox was predicted by scientists in 1988: Goats and Soda : NPR. Accessed: Aug. 28, 2022. [Online]. Available: https://www.npr.org/sections/goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-monkeypox-in-1988-heres-why-they-were-right

Multi-country monkeypox outbreak in non-endemic countries. Accessed: Aug. 28. [Online]. Available: (2022). https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385

Bunge, E. M. et al. The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Negl. Trop. Dis. 16, 1–20. https://doi.org/10.1371/journal.pntd.0010141 (2022). no. 2.

Article 
MATH 

Google Scholar
 

Mansour, R. F., Althubiti, S. A. & Alenezi, F. Computer Vision with Machine Learning enabled skin lesion classification model. Comput. Mater. Contin. 73 (1), 849–864. https://doi.org/10.32604/cmc.2022.029265 (2022).

Article 

Google Scholar
 

Dong, S., Wang, P. & Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 40, 1–22. https://doi.org/10.1016/j.cosrev.2021.100379 (2021).

Article 
MathSciNet 
MATH 

Google Scholar
 

Abdullah, A. A., Hassan, M. M. & Mustafa, Y. T. A review on bayesian deep learning in Healthcare: Applications and challenges. IEEE Access. 10, 36538–36562. https://doi.org/10.1109/ACCESS.2022.3163384 (2022).

Article 
MATH 

Google Scholar
 

Yan, K., Wang, X., Lu, L. & Summers, R. M. DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging. 5 (03), 1–11. https://doi.org/10.1117/1.jmi.5.3.036501 (2018).

Article 
MATH 

Google Scholar
 

Kijowski, R., Liu, F., Caliva, F. & Pedoia, V. Deep learning for Lesion Detection, Progression, and prediction of Musculoskeletal Disease. J. Magn. Reson. Imaging. 52 (6), 1607–1619. https://doi.org/10.1002/jmri.27001 (2020).

Article 
PubMed 
MATH 

Google Scholar
 

Anupama, C. S. S. et al. Deep learning with backtracking search optimization based skin lesion diagnosis model. Comput. Mater. Contin. 70 (1), 1297–1313. https://doi.org/10.32604/cmc.2022.018396 (2021).

Article 
MATH 

Google Scholar
 

Talo, M., Baloglu, U. B., Yıldırım, Ö. & Rajendra Acharya, U. Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54, 176–188. https://doi.org/10.1016/j.cogsys.2018.12.007 (2019).

Article 
MATH 

Google Scholar
 

Ozturk, T. et al. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 1–11. https://doi.org/10.1016/j.compbiomed.2020.103792 (2020).

Article 
CAS 
MATH 

Google Scholar
 

Kott, O. et al. Development of a deep learning algorithm for the histopathologic diagnosis and Gleason grading of prostate Cancer biopsies: a pilot study. Eur. Urol. Focus. 7 (2), 347–351. https://doi.org/10.1016/j.euf.2019.11.003 (2021).

Article 
PubMed 
MATH 

Google Scholar
 

Shkolyar, E. et al. Augmented bladder tumor detection using deep learning. Eur. Urol. 76 (6), 714–718. https://doi.org/10.1016/j.eururo.2019.08.032 (2019).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Ahmed, F., Fatima, A., Mamoon, M. & Khan, S. Identification of the Diabetic Retinopathy Using ResNet-18, in 2nd International Conference on Cyber Resilience, ICCR Dubai, United Arab Emirates: IEEE, 2024, pp. 1–6. doi: (2024). https://doi.org/10.1109/ICCR61006.2024.10532925

Menaouer, B., Zoulikha, D., El-Houda, K. N., Mohammed, S. & Matta, N. Coronavirus pneumonia classification using X-Ray and CT scan images with deep convolutional neural network models. J. Inf. Technol. Res. 15 (1), 1–23. https://doi.org/10.4018/jitr.299391 (2022).

Article 
MATH 

Google Scholar
 

Menaouer, B., El-Houda, K. N., Zoulikha, D., Mohammed, S. & Matta, N. Detection and classification of brain tumors from MRI images using a deep convolutional neural Network Approach. Int. J. Softw. Innov. 10 (1), 1–25. https://doi.org/10.4018/IJSI.293269 (2022).

Article 
MATH 

Google Scholar
 

Hesamian, M. H., Jia, W., He, X. & Kennedy, P. Deep learning techniques for Medical Image Segmentation: achievements and challenges. J. Digit. Imaging. 32 (4), 582–596. https://doi.org/10.1007/s10278-019-00227-x (2019).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Roth, H. R. et al. Deep learning and its application to medical image segmentation. Med. IMAGING Technol. 36 (2), 63–71. https://doi.org/10.11409/mit.36.63 (2018).

Article 
MATH 

Google Scholar
 

Mohammed, S. S., Menaouer, B., Zohra, A. F. F. & Nada, M. Sentiment analysis of COVID-19 tweets using adaptive neuro-fuzzy inference system models. Int. J. Softw. Sci. Comput. Intell. 14 (1), 1–20. https://doi.org/10.4018/IJSSCI.300361 (2022).

Article 

Google Scholar
 

Shen, D., Wu, G. & Suk, H. I. Deep learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 176 (1), 1–35. https://doi.org/10.1146/annurev-bioeng-071516-044442.Deep (2017).

Article 
MATH 

Google Scholar
 

Meijering, E. A bird ’ s-eye view of deep learning in bioimage analysis. Comput. Struct. Biotechnol. J. 18, 2312–2325. https://doi.org/10.1016/j.csbj.2020.08.003 (2020).

Article 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Jia, X., Ren, L. & Cai, J. Clinical implementation of AI technologies will require interpretable AI models. Med. Phys. 47 (1), 1–4. https://doi.org/10.1002/mp.13891 (2020).

Article 
CAS 
PubMed 
MATH 

Google Scholar
 

Karimkhani, C. et al. Global skin disease morbidity and mortality an update from the global burden of disease study 2013. JAMA Dermatology. 153 (5), 406–412. https://doi.org/10.1001/jamadermatol.2016.5538 (2017).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Seth, D., Cheldize, K., Brown, D. & Freeman, E. E. Global burden of skin disease: inequities and innovations. Curr. Dermatol. Rep. 6 (3), 204–210. https://doi.org/10.1007/s13671-017-0192-7 (2017).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Chang, X. & Chen, M. Research progress of varicella and its immunoprophylaxis. Front. Med. Sci. Res. 4 (5), 36–39. https://doi.org/10.25236/FMSR.2022.040507 (2022).

Article 
ADS 
MATH 

Google Scholar
 

Wutzler, P. et al. Varicella vaccination – the global experience. Expert Rev. Vaccines. 16 (8), 833–843 (2017).

Article 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Roy, K. et al. Skin disease detection based on different segmentation techniques, in International Conference on Opto-Electronics and Applied Optics, Optronix 2019, Kolkata, India: IEEE, pp. 1–5. doi: (2019). https://doi.org/10.1109/OPTRONIX.2019.8862403

Daud, M. R. H. M., Yaacob, N. A., Ibrahim, M. I. & Muhammad, W. A. R. W. Five-Year Trend of measles and its Associated factors inPahang, Malaysia: a Population-based study. Int. J. Environ. Res. Public. Health. 19, 1–10 (2022).

MATH 

Google Scholar
 

VON MAGNUS, S., ANDERSEN, E. K., PETERSEN, K. B. & AKSEI, B. A. A POX-LIKE DISEASE IN CYNOMOLGUS MONKEYS, FROM STATENS SEHUMINSTITUT, DIRECTOH J. OHSKOV, M.D., pp. 156–176, (1959).

Ladnyj, I. D., Ziegler, P. & Kima, E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 46 (5), 593–597 (1972).

CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar
 

Reynolds, M. G., Doty, J. B., McCollum, A. M., Olson, V. A. & Nakazawa, Y. Monkeypox re-emergence in Africa: a call to expand the concept and practice of one health. Expert Rev. Anti Infect. Ther. 17 (2), 129–139. https://doi.org/10.1080/14787210.2019.1567330 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Koenig, K. L., Beÿ, C. K. & Marty, A. M. Monkeypox 2022 identify-Isolate-Inform: a 3I Tool for frontline clinicians for a zoonosis with escalating human community transmission. One Heal. 15, 1–13. https://doi.org/10.1016/j.onehlt.2022.100410 (2022).

Article 

Google Scholar
 

W. H. O. (WHO), Multi-country monkeypox outbreak in non-endemic countries: Update. Accessed: Sep. 04, 2022. [Online]. Available: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON388

Ali, S. N. et al. Monkeypox Skin Lesion Detection Using Deep Learning Models: A Feasibility Study, Comput. Vis. Pattern Recognit., pp. 2–5, [Online]. Available: (2022). http://arxiv.org/abs/2207.03342

Gülmez, B. MonkeypoxHybridNet: A hybrid deep convolutional neural network model for monkeypox disease detection, Int. Res. Eng. Sci., vol. 3, pp. 49–64, [Online]. Available: (2022). https://desytamara.blogspot.com/2017/11/sistem-pelayanan-perpustakaan-dan-jenis.html%0Ahttps://lambeturah.id/pengertian-website-secara-umum-dan-menurut-para-ahli/%0Ahttps://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf2252

Irmak, M. C., Aydın, T. & Yağanoğlu, M. Monkeypox Skin Lesion Detection with MobileNetV2 and VGGNet Models, in TIPTEKNO 2022 – Medical Technologies Congress, Proceedings, Antalya, Turkey, pp. 2–5. doi: (2022). https://doi.org/10.1109/TIPTEKNO56568.2022.9960194

Singh, U. & Songare, L. S. Analysis and Detection of Monkeypox using the GoogLeNet Model, in In Proceedings of the International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 2022, pp. 1000–1008. doi: (2022). https://doi.org/10.1109/ICACRS55517.2022.10029125

Sharma, K., Kishlay, V., Kumar & Mittal, M. MonkeyPox, Measles and ChickenPox Detection through Image-Processing using Residual Neural Network (ResNet), in 6th International Conference on Information Systems and Computer Networks, ISCON 2023, Mathura, India: IEEE, 2023, pp. 1–6. doi: (2023). https://doi.org/10.1109/ISCON57294.2023.10112085

Sethy, P. K. et al. Detection of Monkeypox Based on Improved Darknet19, in IEEE 8th International Conference for Convergence in Technology, I2CT 2023, Pune, India: IEEE, 2023, pp. 1–3. doi: (2023). https://doi.org/10.1109/I2CT57861.2023.10126170

Uysal, F. Detection of Monkeypox Disease from Human skin images with a Hybrid Deep Learning Model. Diagnostics 13 (10), 1–23. https://doi.org/10.3390/diagnostics13101772 (2023).

Article 
MATH 

Google Scholar
 

Ariansyah, M. H., Winarno, S. & Sani, R. R. Monkeypox and Measles Detection using CNN with VGG-16 transfer learning. J. Comput. Res. Innov. 8 (1), 32–44. https://doi.org/10.3390/s23041783 (2023).

Article 

Google Scholar
 

Kundu, D., Siddiqi, U. R. & Rahman, M. M. Vision Transformer based Deep Learning Model for Monkeypox Detection, in 25th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh: IEEE, pp. 1021–1026. doi: (2023). https://doi.org/10.1109/iccit57492.2022.10054797

Akram, A. et al. SkinMarkNet: an automated approach for prediction of monkeyPox using image data augmentation with deep ensemble learning models. Multimed Tools Appl. 1–17. https://doi.org/10.1007/s11042-024-19862-w (2024).

Monkeypox Skin Images Dataset (MSID). | Kaggle. Accessed: Aug. 28, 2022. [Online]. Available: https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset

Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition, in Published as a conference paper at ICLR, pp. 1–14. (2015).

Althubiti, S. A., Alenezi, F., Shitharth, S., Sangeetha, K. & Reddy, C. V. S. Circuit Manufacturing Defect Detection Using VGG16 Convolutional Neural Networks, Wirel. Commun. Mob. Comput., vol. pp. 1–10, 2022, doi: (2022). https://doi.org/10.1155/2022/1070405

Doshi-Velez, F. & Kim, B. Towards a Rigorous Science of interpretable machine learning. arXiv Prepr, pp. 1–13, (2017).

Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One. 10 (7), 1–46. https://doi.org/10.1371/journal.pone.0130140 (2015).

Article 
CAS 
MATH 

Google Scholar
 

Böhle, M., Eitel, F., Weygandt, M. & Ritter, K. Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification. Front. Aging Neurosci. 11, 1–17. https://doi.org/10.3389/fnagi.2019.00194 (2019).

Article 
MATH 

Google Scholar
 

Huang, X., Jamonnak, S., Zhao, Y., Wu, T. H. & Xu, W. A visual designer of layer-wise relevance propagation models. Eurographics Conf. Vis. 40 (3), 227–238 (2021).


Google Scholar
 

Seliya, N., Khoshgoftaar, T. M. & Van Hulse, J. A study on the relationships of classifier performance metrics, in 21st IEEE International Conference on Tools with Artificial Intelligence, Newark, NJ, USA, pp. 59–66. doi: (2009). https://doi.org/10.1109/ICTAI.2009.25