Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar
 

Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

Buterakos, D., Barnes, E. & Economou, S. E. Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Phys. Rev. X 7, 041023 (2017).


Google Scholar
 

Michaels, C. P. et al. Multidimensional cluster states using a single spin-photon interface coupled strongly to an intrinsic nuclear register. Quantum 5, 565 (2021).

Article 
MATH 

Google Scholar
 

Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

Article 
ADS 

Google Scholar
 

Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

Stas, P.-J. et al. Robust multi-qubit quantum network node with integrated error detection. Science 378, 557–560 (2022).

Bourassa, A. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020).

Drmota, P. et al. Robust quantum memory in a trapped-ion quantum network node. Phys. Rev. Lett. 130, 090803 (2023).

Article 
ADS 
MATH 

Google Scholar
 

Ruskuc, A., Wu, C.-J., Rochman, J., Choi, J. & Faraon, A. Nuclear spin-wave quantum register for a solid-state qubit. Nature 602, 408–413 (2022).

Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).

Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020).

Article 
ADS 

Google Scholar
 

Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

Bechtold, A. et al. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot. Nat. Phys. 11, 1005–1009 (2015).

Malinowski, F. K. et al. Notch filtering the nuclear environment of a spin qubit. Nat. Nanotechnol. 12, 16–20 (2016).

Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

Article 
ADS 
MATH 

Google Scholar
 

Taylor, J. M., Imamoglu, A. & Lukin, M. D. Controlling a mesoscopic spin environment by quantum bit manipulation. Phys. Rev. Lett. 91, 246802 (2003).

Article 
ADS 
MATH 

Google Scholar
 

Taylor, J. M., Marcus, C. M. & Lukin, M. D. Long-lived memory for mesoscopic quantum bits. Phys. Rev. Lett. 90, 206803 (2003).

Article 
ADS 
MATH 

Google Scholar
 

Ding, W., Shi, A., You, J. Q. & Zhang, W. High-fidelity quantum memory utilizing inhomogeneous nuclear polarization in a quantum dot. Phys. Rev. B 90, 235421 (2014).

Article 
ADS 
MATH 

Google Scholar
 

Denning, E. V., Gangloff, D. A., Atatüre, M., Mørk, J. & Le Gall, C. Collective quantum memory activated by a driven central spin. Phys. Rev. Lett. 123, 140502 (2019).

Article 
ADS 

Google Scholar
 

Kozhekin, A. E., Mølmer, K. & Polzik, E. Quantum memory for light. Phys. Rev. A 62, 033809 (2000).

Article 
ADS 
MATH 

Google Scholar
 

Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015).

Eickbusch, A. et al. Fast universal control of an oscillator with weak dispersive coupling to a qubit. Nat. Phys. 18, 1464–1469 (2022).

Högele, A. et al. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot. Phys. Rev. Lett. 108, 197403 (2012).

Article 
ADS 
MATH 

Google Scholar
 

Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

Jackson, D. M. et al. Optimal purification of a spin ensemble by quantum-algorithmic feedback. Phys. Rev. X 12, 031014 (2022).

MATH 

Google Scholar
 

Jackson, D. M. et al. Quantum sensing of a coherent single spin excitation in a nuclear ensemble. Nat. Phys. 17, 585–590 (2021).

Chekhovich, E. A., da Silva, S. F. C. & Rastelli, A. Nuclear spin quantum register in an optically active semiconductor quantum dot. Nat. Nanotechnol. 15, 999–1004 (2020).

Millington-Hotze, P. et al. Approaching a fully-polarized state of nuclear spins in a solid. Nat. Commun. 15, 985 (2024).

Article 
ADS 
MATH 

Google Scholar
 

Nguyen, G. N. et al. Enhanced electron-spin coherence in a GaAs quantum emitter. Phys. Rev. Lett. 131, 210805 (2023).

Article 
ADS 

Google Scholar
 

Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).

Hartmann, S. R. & Hahn, E. L. Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053 (1962).

Gangloff, D. A. et al. Witnessing quantum correlations in a nuclear ensemble via an electron spin qubit. Nat. Phys. 17, 1247–1253 (2021).

Huo, Y. H., Rastelli, A. & Schmidt, O. G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett. 102, 152105 (2013).

Article 
ADS 

Google Scholar
 

Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8, 15506 (2017).

Article 
ADS 
MATH 

Google Scholar
 

Chekhovich, E. A. et al. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots. Nat. Mater. 16, 982–986 (2017).

Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020).

Article 
ADS 
MATH 

Google Scholar
 

Berglund, M. & Wieser, M. E. Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl. Chem. 83, 397–410 (2011).

Botzem, T. et al. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs. Nat. Commun. 7, 11170 (2016).

Article 
ADS 
MATH 

Google Scholar
 

Shofer, N. et al. Tuning the coherent interaction of an electron qubit and a nuclear magnon. Preprint at https://arxiv.org/abs/2404.19679 (2024).

Bodey, J. H. et al. Optical spin locking of a solid-state qubit. npj Quantum Inf. 5, 95 (2019).

Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G. & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5, 509–514 (2009).

Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

Henstra, A., Dirksen, P., Schmidt, J. & Wenckebach, W. Nuclear spin orientation via electron spin locking (NOVEL). J. Magn. Reson. 77, 389–393 (1987).

Wesenberg, J. & Mølmer, K. Mixed collective states of many spins. Phys. Rev. A 65, 062304 (2002).

Article 
ADS 
MATH 

Google Scholar
 

Appel, M. H. et al. Entangling a hole spin with a time-bin photon: a waveguide approach for quantum dot sources of multiphoton entanglement. Phys. Rev. Lett. 128, 233602 (2022).

Article 
ADS 
MATH 

Google Scholar
 

Lai, C. W., Maletinsky, P., Badolato, A. & Imamoglu, A. Knight-field-enabled nuclear spin polarization in single quantum dots. Phys. Rev. Lett. 96, 167403 (2006).

Article 
ADS 

Google Scholar
 

Sallen, G. et al. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field. Nat. Commun. 5, 3268 (2014).

Article 
ADS 
MATH 

Google Scholar
 

Wüst, G. et al. Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot. Nat. Nanotechnol. 11, 885–889 (2016).

Witthaut, D., Lukin, M. D. & Sørensen, A. S. Photon sorters and QND detectors using single photon emitters. Europhys. Lett. 97, 50007 (2012).

Article 
ADS 
MATH 

Google Scholar
 

Frantzeskakis, R. et al. Time-crystalline behavior in central-spin models with Heisenberg interactions. Phys. Rev. B 108, 075302 (2023).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar
 

Zaporski, L. et al. Many-body singlet prepared by a central-spin qubit. PRX Quantum 4, 040343 (2023).

Article 
ADS 

Google Scholar