Nagy, K. & Körmendi, K. Use of renewable energy sources in light of the “New Energy Strategy for Europe 2011–2020”. Appl Energy 96, 393–399 (2012).
Aszódi, A. et al. Comparative analysis of national energy strategies of 19 European countries in light of the green deal’s objectives. Energy Convers. Manag. X 12, 100136 (2021).
Liu, W. et al. The production and application of hydrogen in steel industry. Int. J. Hydrog. Energy 46, 10548–10569 (2021).
Wang, C. et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests. Int. J. Hydrog. Energy 48, 243–256 (2023).
Meng, B. et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. Int. J. Hydrog. Energy 42, 7404–7412 (2017).
Zhang, S. et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation. Int. J. Hydrog. Energy 46, 20621–20629 (2021).
Nguyen, T. T., Park, J., Kim, W. S., Nahm, S. H. & Beak, U. B. Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel. Int. J. Hydrog. Energy 45, 2368–2381 (2020).
Dwivedi, S. K. & Vishwakarma, M. Hydrogen embrittlement in different materials: a review. Int. J. Hydrog. Energy 43, 21603–21616 (2018).
Islam, A. et al. Hydrogen blending in natural gas pipelines: a comprehensive review of material compatibility and safety considerations. Int. J. Hydrog. Energy 93, 1429–1461 (2024).
Liu, Q. & Atrens, A. A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels. Corros. Rev. 31, 85–103 (2013).
Zhao, W., Zhang, T., Zhao, Y., Sun, J. & Wang, Y. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment. Corros. Sci. 111, 84–97 (2016).
Jebaraj, J. J. M., Morrison, D. J. & Suni, I. I. Hydrogen diffusion coefficients through Inconel 718 in different metallurgical conditions. Corros. Sci. 80, 517–522 (2014).
Bernstein, I. M. The effect of hydrogen on the deformation of iron. Scr. Metall. 8, 343–349 (1974).
Devanathan, M. A. V. & Stachurski, Z. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc. R. Soc. Lond. A Math. Phys. Sci. 270, 90–102 (1962).
Mohtadi-Bonab, M. A. & Masoumi, M. Different aspects of hydrogen diffusion behavior in pipeline steel. J. Mater. Res. Technol. 24, 4762–4783 (2023).
Hull, D. & Bacon, D. J. Chapter 2 – Observation of dislocations. In: Introduction to dislocations, 5th ed. (eds. Hull, D. & Bacon, D. J.) 21–41 (Butterworth-Heinemann, 2011). https://doi.org/10.1016/B978-0-08-096672-4.00002-5.
Song, J. & Curtin, W. A. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12, 145–151 (2013).
Bulatov, V. & Cai, W. One dislocation at a time. Nat. Mater. 22, 679–680 (2023).
Choo, W. Y. & Lee, J. Y. Effect of cold working on the hydrogen trapping phenomena in pure iron. Metall. Trans. A 14, 1299–1305 (1983).
Song, Y. et al. Improvement of hydrogen embrittlement resistance of 2205 duplex stainless steel by laser peening. Int J. Hydrog. Energy 48, 18930–18945 (2023).
Martin, F. et al. State of hydrogen in matter: fundamental Ad/absorption, trapping and transport mechanisms. In: Mechanics-Microstructure-Corrosion Coupling 171–197 (Elsevier, 2019).
Kurkela, M. & Latanision, R. M. The effect of plastic deformation on the transport of hydrogen in nickel. Scr. Metall. 13, 927–932 (1979).
Chêne, J. & Brass, A. M. Hydrogen transport by mobile dislocations in nickel base superalloy single crystals. Scr. Mater. 40, 537–542 (1999).
Kumnick, A. J. & Johnson, H. H. Deep trapping states for hydrogen in deformed iron. Acta Metall. 28, 33–39 (1980).
Lessar, J. F. & Gerberich, W. W. Grain size effects in hydrogen-assisted cracking. Metall. Trans. A 7, 953–960 (1976).
Ramunni, V. P., Pascuet, M. I., Castin, N. & Rivas, A. M. F. The influence of grain size on the hydrogen diffusion in bcc Fe. Comput Mater. Sci. 188, 110146 (2021).
Yazdipour, N., Dunne, D. P. & Pereloma, E. V. Effect of grain size on the hydrogen diffusion process in steel using cellular automaton approach. In: Materials Science Forum vol. 706 1568–1573 (Trans Tech Publ, 2012).
Brass, A. M. & Chanfreau, A. Accelerated diffusion of hydrogen along grain boundaries in nickel. Acta Mater. 44, 3823–3831 (1996).
Pourazizi, R., Mohtadi-Bonab, M. A., Davani, R. K. Z. & Szpunar, J. A. Effect of thermo-mechanical controlled process on microstructural texture and hydrogen embrittlement resistance of API 5L X70 pipeline steels in sour environments. Int. J. Press. Vessels Pip. 194, 104491 (2021).
Ichimura, M., Sasajima, Y. & Imabayashi, M. Grain Boundary Effect on Diffusion of Hydrogen in Pure Aluminum. Mater. Trans., JIM 32, 1109–1114 (1991).
Paul, A., Laurila, T., Vuorinen, V. & Divinski, S. V. Short-circuit diffusion. In: Thermodynamics, diffusion and the Kirkendall effect in solids (eds. Paul, A., Laurila, T., Vuorinen, V. & Divinski, S. V.) 429–491 (Springer International Publishing, 2014). https://doi.org/10.1007/978-3-319-07461-0_10.
Oudriss, A. et al. The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel. Scr. Mater. 66, 37–40 (2012).
Yazdipour, N., Haq, A. J., Muzaka, K. & Pereloma, E. V. 2D modelling of the effect of grain size on hydrogen diffusion in X70 steel. Comput Mater. Sci. 56, 49–57 (2012).
Sakamoto, Y. & Takao, K. Diffusion of Hydrogen in Quenched and Tempered Alloy Steels. Corrosion Eng. 27, 641–646 (1978).
Asaoka, T., Lapasset, G., Aucouturier, M. & Lacombe, P. Observation of hydrogen trapping in Fe-0.15 wt% Ti alloy by high resolution autoradiography. Corrosion 34, 39–47 (1978).
Nakai, Y. Mechanism of delayed fracture by hydrogen, 75 (The Iron and Steel Inst. of Japan, 1975).
Hagi, H. Effect of interface between cementite and ferrite on diffusion of hydrogen in carbon steels. Mater. Trans., JIM 35, 168–173 (1994).
Tau, L. & Chan, S. L. I. Effects of ferrite/pearlite alignment on the hydrogen permeation in a AISI 4130 steel. Mater. Lett. 29, 143–147 (1996).
Xiaolin, W., Guang, C., Shihan, L. I. & Jing, Y. Effects of ferrite/pearlite structure on hydrogen diffusion in pipeline steels. Mech. Eng. 45, 305–313 (2023).
Forot, C. et al. Impact of cementite tortuosity on hydrogen diffusion in pearlitic steels (Eurocorr, 2015).
Lee, H.-L. & Chan, S. L.-I. Hydrogen embrittlement of AISI 4130 steel with an alternate ferrite/pearlite banded structure. Mater. Sci. Eng. A 142, 193–201 (1991).
Park, G. T., Koh, S. U., Jung, H. G. & Kim, K. Y. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel. Corros. Sci. 50, 1865–1871 (2008).
Thomas, A. & Szpunar, J. A. Hydrogen diffusion and trapping in X70 pipeline steel. Int. J. Hydrog. Energy 45, 2390–2404 (2020).
Ghadiani, H., Farhat, Z., Alam, T. & Islam, M. A. Assessing hydrogen embrittlement in pipeline steels for natural gas-hydrogen blends: implications for existing infrastructure. Solids 5, 375–393 (2024).
Sun, B. et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Nat. Mater. 20, 1629–1634 (2021).
Zhou, P., Li, W., Zhao, H. & Jin, X. Role of microstructure on electrochemical hydrogen permeation properties in advanced high strength steels. Int J. Hydrog. Energy 43, 10905–10914 (2018).
Li, Z. H. et al. Role of deformation on the hydrogen trapping in the pearlitic steel. Scr. Mater. 241, 115859 (2024).
Kawakami, K. & Matsumiya, T. Ab-initio investigation of hydrogen trap state by cementite in bcc-Fe. ISIJ Int. 53, 709–713 (2013).
Mirzoev, A. A., Verkhovykh, A. V., Okishev, K. Y. & Mirzaev, D. A. Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics. Mol. Phys. 116, 482–490 (2018).
Jiang, Y., Li, C., Wang, D. & Di, X. Effect of cyclic plastic deformation on hydrogen diffusion behavior and embrittlement susceptibility of reeling-pipeline steel weldments. Int J. Hydrog. Energy 46, 30158–30172 (2021).
Pressouyre, G. M. & Bernstein, I. M. An example of the effect of hydrogen trapping on hydrogen embrittlement. Metall. Trans. A 12, 835–844 (1981).
Jack, T. A. Investigation of hydrogen induced cracking susceptibility of API 5L X65 pipeline steels (University of Saskatchewan, 2021).
Mohtadi-Bonab, M. A., Szpunar, J. A. & Razavi-Tousi, S. S. A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels. Eng. Fail Anal. 33, 163–175 (2013).
Mohtadi-Bonab, M. A., Szpunar, J. A. & Razavi-Tousi, S. S. Hydrogen induced cracking susceptibility in different layers of a hot rolled X70 pipeline steel. Int J. Hydrog. Energy 38, 13831–13841 (2013).
Jeklih, A. Absorption and diffusion of hydrogen in steels. Mater. Tehnol. 34, 331 (2000).
Svoboda, J. & Fischer, F. D. Modelling for hydrogen diffusion in metals with traps revisited. Acta Mater. 60, 1211–1220 (2012).
Hagi, H. & Hayashi, Y. Dislocation trapping in hydrogen and deuterium diffusion in iron. J. Jpn. Inst. Met. 49, 327–331 (1985).
Kiuchi, K. & McLellan, R. B. The solubility and diffusivity of hydrogen in well-annealed and deformed iron. In: Perspectives in hydrogen in metals, 29–52 (Elsevier, 1986).
Protopopoff, E. & Marcus, P. Surface effects on hydrogen entry into metals. in Corrosion mechanisms in theory and practice 62–105 (CRC Press, 2002).
Wipf, H. Hydrogen in Metals III: Properties and Applications. vol. 73 (Springer, 1997).
Thomas, G. J., Bernstein, I. M. & Thompson, A. W. Hydrogen effects in metals. In: Proceedings of the third international conference on effect of hydrogen on behavior of materials (Moran W. Y., 1980),(eds, Bernstein, I. M. & Thompson, A. W.) 77 (The Metallurgical Society of AIME, 1981).
Alefeld, G. & Völkl, J. Hydrogen in metals I-Basic properties, 28 (Berlin and New York, 1978).
Wipf, H. Solubility and diffusion of hydrogen in pure metals and alloys. Phys. Scr. 2001, 43 (2001).
Wipf, H. Diffusion of hydrogen in metals. In: Hydrogen in Metals III: properties and applications 51–91 (Springer, 2007).
Grabert, H. & Schober, H. R. Theory of tunneling and diffusion of light interstitials in metals. In: Hydrogen in metals III: Properties and applications 5–49 (Springer, 2007).
Schober, H. R. & Stoneham, A. M. Motion of interstitials in metals: quantum tunneling at low temperatures. Phys. Rev. B 26, 1819 (1982).
Turnbull, A. Hydrogen diffusion and trapping in metals. In: Gaseous hydrogen embrittlement of materials in energy technologies 89–128 (Elsevier, 2012).
de Santa Maria, M. S. & Turnbull, A. The effect of H2S concentration and pH on the cracking resistance of AISI 410 stainless steel in 5% brine. Corros. Sci. 29, 69–88 (1989).
Clark, E. B., Leis, B. N. & Eiber, R. J. Integrity characteristics of vintage pipelines (Battelle Memorial Institute, Columbus, 2004).
Slifka, A. J. et al. Fatigue measurement of pipeline steels for the application of transporting gaseous hydrogen. J. Press Vessel. Technol. 140, 011407 (2018).
Steiner, M., Marewski, U. & Engel, C. Qualification of high-pressure gas pipelines for transmission of hydrogen. (Pipeline Technology Conference, 2023).
ASTM. ASTM E8-04 – standard test methods for tension testing of metallic materials (ASTM, 2024).
Hussein, N. Chapter 7 Phase equilibrium diagrams. In: Materials science and engineering, 146 (International Energy and Environment Foundation, 2017).
ASTM. G148 – Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique (ASTM, 2018).
Atabay, S. E. et al. Laser powder bed fusion printing of CoCrFeMnNi high entropy alloy: processing, microstructure, and mechanical properties. High Entropy Alloys Mater. 2, 129–173 (2024).
Ajito, S., Hojo, T., Koyama, M. & Akiyama, E. Effects of ammonium thiocyanate and pH of aqueous solutions on hydrogen absorption into iron under cathodic polarization. ISIJ Int. 61, 1209–1214 (2021).
Turnbull, A. 4 – Hydrogen diffusion and trapping in metals. In: Gaseous hydrogen embrittlement of materials in energy technologies 89–128 (Woodhead Publishing Limited, 2012).
Liu, Q., Atrens, A. D., Shi, Z., Verbeken, K. & Atrens, A. Determination of the hydrogen fugacity during electrolytic charging of steel. Corros. Sci. 87, 239–258 (2014).
Lu, X., Wang, D. & Johnsen, R. Hydrogen diffusion and trapping in nickel-based alloy 625: An electrochemical permeation study. Electrochim. Acta 421, 140477 (2022).
Cheng, Y. F. Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking. Int. J. Hydrog. Energy 32, 1269–1276 (2007).
Fallahmohammadi, E., Bolzoni, F. & Lazzari, L. Measurement of lattice and apparent diffusion coefficient of hydrogen in X65 and F22 pipeline steels. Int. J. Hydrog. Energy 38, 2531–2543 (2013).
Dong, C. F., Liu, Z. Y., Li, X. G. & Cheng, Y. F. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. Int. J. Hydrog. Energy 34, 9879–9884 (2009).
Song, Y. et al. Effect of cementite on the hydrogen diffusion/trap characteristics of 2.25 Cr-1Mo-0.25 V steel with and without annealing. Materials 11, 788 (2018).
Araújo, D. F., Vilar, E. O. & Carrasco, J. P. A critical review of mathematical models used to determine the density of hydrogen trapping sites in steels and alloys. Int. J. Hydrog. Energy 39, 12194–12200 (2014).
Ashby, M. F. The deformation of plastically non-homogeneous materials. Philos. Mag. J. Theor. Exp. Appl. Phys. 21, 399–424 (1970).
Cottrell, A. H. The mechanical properties of matter (Wiley, New York, 1964).
Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P. Electron backscatter diffraction in materials science. vol. 2 (Springer, 2009).
Pantleon, W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr. Mater. 58, 994–997 (2008).
Choo, W. Y. & Lee, J. Y. Thermal analysis of trapped hydrogen in pure iron. Metall. Trans. A 13, 135–140 (1982).
Lee, J.-L. & Lee, J.-Y. The interaction of hydrogen with the interface of AI 2 O 3 particles in iron. Metall. Trans. A 17, 2183–2186 (1986).
Lin, Y.-C. et al. Response of hydrogen desorption and hydrogen embrittlement to precipitation of nanometer-sized copper in tempered martensitic low-carbon steel. JOM 71, 1349–1356 (2019).
Hong, G.-W. & Lee, J.-Y. The interaction of hydrogen and the cementite-ferrite interface in carbon steel. J. Mater. Sci. 18, 271–277 (1983).
Li, D., Gangloff, R. P. & Scully, J. R. Hydrogen trap states in ultrahigh-strength AERMET 100 steel. Metall. Mater. Trans. A 35, 849–864 (2004).
Wei, F.-G. & Tsuzaki, K. Response of hydrogen trapping capability to microstructural change in tempered Fe–0.2 C martensite. Scr. Mater. 52, 467–472 (2005).
Lee, J.-Y. & Lee, J.-L. A trapping theory of hydrogen in pure iron. Philos. Mag. A 56, 293–309 (1987).
Lee, J.-L. & Lee, J.-Y. The effect of lattice defects induced by cathodic hydrogen charging on the apparent diffusivity of hydrogen in pure iron. J. Mater. Sci. 22, 3939–3948 (1987).
Turnbull, A. & Hutchings, R. B. Analysis of hydrogen atom transport in a two-phase alloy. Mater. Sci. Eng.: A 177, 161–171 (1994).
Chen, Y.-S. et al. Hydrogen trapping and embrittlement in metals–a review. Int. J. Hydrogen Energy 136, 789–821 (2024).
Lee, K. Y., Lee, J.-Y. & Kim, D. R. A study of hydrogen-trapping phenomena in AISI 5160 spring steel. Mater. Sci. Eng. 67, 213–220 (1984).
Lee, J. L. & Lee, J. Y. Hydrogen trapping in AISI 4340 steel. Met. Sci. 17, 426–432 (1983).
Lee, H. G. & Lee, J.-Y. Hydrogen trapping by TiC particles in iron. Acta Metall. 32, 131–136 (1984).