Goossens, D. The aeolian dust accumulation curve. Earth Surf. Process. Land. 26, 1213–1219. https://doi.org/10.1002/esp.274 (2001).
Thomas, D. S. G. & Wiggs, G. F. S. Aeolian system responses to global change: challenges of scale, process and temporal integration. Earth Surf. Process. Land. 33, 1396–1418. https://doi.org/10.1002/esp.1719 (2008).
Lawrence, C. R. & Neff, J. C. The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of dust deposition. Chem. Geol. 267, 46–63. https://doi.org/10.1016/j.chemgeo.2009.02.005 (2009).
Hald, M. & Aspeli, R. Rapid climatic shifts of the northern Norwegian Sea during the last deglaciation and the Holocene. Boreas 26, 15–28 (1997).
Beaudoin, A. B. & Oetelaar, G. A. The changing ecophysical landscape of Southern Alberta during the Late Pleistocene and Early Holocene. Plains Anthropol. 48(187), 187–207. https://doi.org/10.1080/2052546.2003.11949259 (2003).
Ralska-Jasiewiczowa, M. et al. Very fast environmental changes at the Pleistocene/Holocene boundary, recorded in laminated sediments of Lake Gościąż, Poland. Palaeogeogr Palaeocl. 193(2), 225–247. https://doi.org/10.1016/S0031-0182(03)00227-X (2003).
Jónsdóttir, I. S., Magnússon, B., Gudmundsson, J., Elmarsdóttir, Á. & Hjartarson, H. Variable sensitivity of plant communities in Iceland to experimental warming. Glob Change Biol. 11(4), 553–563. https://doi.org/10.1111/j.1365-2486.2005.00928.x (2005).
Jennings, A. et al. Chronology and paleoenvironments during the late Weichselian deglaciation of the southwest Iceland shelf. Boreas 29, 167–183 (2000).
Geirsdóttir, Á., Miller, G. H., Axford, Y. & Ólafsdóttir, S. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quaternary Sci. Rev. 28(21–22), 2107–2118. https://doi.org/10.1016/j.quascirev.2009.03.013 (2009).
Hauser, S. & Schmitt, A. Glacier retreat in Iceland mapped from space: time series analysis of geodata from 1941 to 2018. J. Photogramm Remote Sens. Geoinf. Sci. 89, 273–291. https://doi.org/10.1007/s41064-021-00139-y (2021).
Szafraniec, J. E. & Dobiński, W. Deglaciation rate of selected nunataks in Spitsbergen, Svalbard—potential for permafrost expansion above the glacial environment. Geosciences 10(5), 202. https://doi.org/10.3390/geosciences10050202 (2020).
Popov, A. I. Cryolithogenesis as a type of lithogenesis. In Proceedings, Permafrost: Fourth International Conference, Washington, United States (1983).
Wojtanowicz, J. The lithology of silty deposits in the Belsund region of Spitsbergen In Wyprawy Geograficzne na Spitsbergen = Geographical Expedition to Spitsbergen, 23–35 (University of Maria Curie-Skłodowska, 1991).
Ovchinnikov, A. Y., Khudyakov, O. I., Khokhlova, O. S. & Makshanov, A. M. Paleocryolithopedogenesis and evolution of soddy-podzolic soils of the taiga zone in the northeast of the East European Plain. Eurasian Soil. Sci. 56(12), 1911–1924. https://doi.org/10.1134/S1064229323602172 (2023).
Frechen, M., Oches, E. A. & Kohfeld, K. E. Loess in Europe—mass accumulation rates during the Last Glacial Period. Quaternary Sci. Rev. 22, 1835–1857. https://doi.org/10.1016/S0277-3791(03)00183-5 (2003).
Fedorowicz, S. & Łanczont, M. Rate of loess accumulation in Europe in the Late Weichselian (Late Vistulian). Geol. Q. 51(2), 193–202 (2007).
Jary, Z. Loess–soil sequences as a source of climatic proxies: an example from SW Poland. Geologija 52(1–4), 40–45. https://doi.org/10.2478/v10056-010-0004-2 (2010).
Fischer, P. et al. Formation and geochronology of Last Interglacial to Lower Weichselian loess/palaeosol sequences – case studies from the Lower Rhine Embayment, Germany. E&G Quaternary Sci. J. 61(1), 48–63. https://doi.org/10.3285/eg.61.1.04 (2012).
Lehmkuhl, F. et al. Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation. Earth-Sci. Rev. 215, 103496. https://doi.org/10.1016/j.earscirev.2020.103496 (2021).
Jary, Z. et al. Chronostratigraphy of the periglacial loess-paleosol sequence in Zaprężyn, SW Poland. Geochronometria 50(1), 144–156. https://doi.org/10.2478/geochr-2023-0014 (2023).
Dzierżek, J. & Lindner, L. Sub- and supra-moraine loesses in the vistula catchment (Poland) with regard to the age and extent of the Scandinavian ice-sheets. Acta Geol. Pol. 74(2), e11. https://doi.org/10.24425/agp.2024.150007 (2024).
Brookfield, M. E. Aeolian processes and features in cool climates. In Ice-Marginal and Periglacial Processes and Sediments. Sp. Publ. 354 (eds Martini, I. P., French, H. M. & Alberti, A. P.) 241–258 (Geological Society, 2011).
Koster, E. A. Ancient and modern cold-climate aeolian sand deposition: a review. J. Quaternary Sci. 3(1), 69–83. https://doi.org/10.1002/jqs.3390030109 (1988).
Łopuch, M. & Jary, Z. Sand sources and migration of the dune fields in the central European sand Belt – A pattern analysis approach. Geomorphology 439, 108856. https://doi.org/10.1016/j.geomorph.2023.108856 (2023).
Łopuch, M., Sokołowski, R. J. & Jary, Z. Factors controlling the development of cold-climate dune fields within the central part of the European Sand Belt – Insights from morphometry. Geomorphology 420, 108514. https://doi.org/10.1016/j.geomorph.2022.108514 (2023).
Bertran, P. et al. Revised map of European aeolian deposits derived from soil texture data. Quaternary Sci. Rev. 266, 107085. https://doi.org/10.1016/j.quascirev.2021.107085 (2021).
Arnalds, O., Daggson-Waldhauserova, P. & Olafsson, H. The Icelandic volcanic aeolian environment: processes and impacts — A review. Aeolian Res. 20, 176–195. https://doi.org/10.1016/j.aeolia.2016.01.004 (2016).
Wojtanowicz, J. Współczesne Procesy Eoliczne = Contemporary Aeolian Processes (University of Maria Curie-Skłodowska, 2010). (in Polish).
Bullard, J. E. Contemporary glacigenic inputs to the dust cycle. Earth Surf. Proc. Land. 38, 71–89. https://doi.org/10.1002/esp.3315 (2013).
Bagnold, R. A. The surface wind. In The Physics of Blown Sand and Desert Dunes (ed. Bagnold, R. A.) 38–56 (Springer Dordrecht, 1973; first published in 1941). https://doi.org/10.1007/978-94-009-5682-7_4.
Gisladottir, F. O., Arnalds, O. & Gisladottir, G. The effect of landscape and retreating glaciers on wind erosion in South Iceland. Land. Degrad. Develop. 16, 177–187. https://doi.org/10.1002/ldr.645 (2005).
Rotnicka, J. Aeolian vertical mass flux profiles above dry and moist sandy beach surfaces. Geomorphology 187, 27–37. https://doi.org/10.1016/j.geomorph.2012.12.032 (2013).
Rotnicka, J. & Dłużewski, M. Vertical profiles of aeolian mass flux above different sand surfaces and sand surfaces covered with pebbles. Catena 212, 106006. https://doi.org/10.1016/j.catena.2021.106006 (2022).
Rotnicka, J., Dłużewski, M., Hesp, P. A. & Tomczak, J. O. Skimming flow and sand transport within and above Ammophila (Marram) grass on a foredune. J. Geophys. Res. -Earth. 128, e2023JF007143. https://doi.org/10.1029/2023JF007143 (2023).
Jones, P. S. A. Sediment Movement in a Sub-Alpine Basin in the Coast Mountains of British Columbia. MSc dissertation (The University of British Columbia, 1982).
Owens, P. N. & Slaymaker, O. Contemporary and post-glacial rates of aeolian deposition in the Coast Mountains of British Columbia, Canada. Geogr. Ann. A. 79(4), 267–276. https://doi.org/10.1111/j.0435-3676.1997.00022.x (1997).
Hugenholtz, C. H. & Wolfe, S. A. Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains. Geomorphology 121(3–4), 274–282. https://doi.org/10.1016/j.geomorph.2010.04.024 (2010).
Engels, S. Modern and Historical Aeolian Deposition Rates in an Uphill Lake Catchment in the Kangerlussuaq Region, West Greenland. PhD dissertation (Utrecht University, 2003).
Van Soest, M. Modern Aeolian Dust Deposition on Arctic Soils in South West Greenland: Linkages Between Geomorphology and Ecosystem Dynamics in Space and Time. PhD dissertation (Loughborough University, 2020).
Czeppe, Z. Przebieg Głównych Procesów Geomorfologicznych w Południowo-Zachodnim Spitsbergenie = The Course of the Main Geomorphological Processes in Southwest Spitsbergen. Zeszyty Naukowe Uniwersytetu Jagiellońskiego – Prace Geograficzne 13 (the Jagiellonian University Press, 1966). (in Polish).
Baranowski, S. & Pękala, K. Nival-eolian processes in the tundra area and in the nunatak zone of Hans and Werenskiöld Glaciers, Vestspitsbergen. Results of Investigations of the Polish Scientific Spitsbergen Expeditions 4. Acta Univ. Wratis. 525, 11–27 (1982).
Rymer, K. G. et al. Contemporary and past aeolian deposition rates in periglacial conditions (Ebba Valley, central Spitsbergen). Catena 211, 105974. https://doi.org/10.1016/j.catena.2021.105974 (2022).
Arnalds, O. Dust sources and deposition of aeolian materials in Iceland. Icel Agric. Sci. 23(1), 3–21 (2010).
IPCC, The Working Group I contribution to the 5th Assessment Report of the Intergovernmental Panel on Climate Change 2013: The Physical Science Basis. (2013).
Malmquist, H. J., Ingimarsson, F., Ingvason, H. R. & Stefánsson, S. M. Climate change and its effects on lakes in SW-Iceland. In Proceedings, 14th Workshop on Physical Processes in Natural Waters, Reykjavik, Iceland (2010).
Bannan, D., Ólafsdóttir, R. & Henning, B. D. Local perspectives on climate change, its impact and adaptation: a case study from the Westfjords Region of Iceland. Climate 10(11), 169. https://doi.org/10.3390/cli10110169 (2022).
Aðalgeirsdóttir, G., Jóhannesson, T., Björnsson, H., Pálsson, F. & Sigurðsson, O. Response of Hofsjökull and southern Vatnajökull, Iceland, to climate change. J. Geophys. Res. -Earth. 111, F03001. https://doi.org/10.1029/2005JF000388 (2006).
Richter, N., Russell, J. M., Garfinkel, J. & Huang, Y. Winter–spring warming in the North Atlantic during the last 2000 years: evidence from southwest Iceland. Clim. Past. 17(3), 1363–1383. https://doi.org/10.5194/cp-17-1363-2021 (2021).
Baurley, N. R., Robson, B. A. & Hart, J. K. Long-term impact of the proglacial lake Jökulsárlón on the flow velocity and stability of Breiðamerkurjökull glacier, Iceland. Earth Surf. Proc. Land. 45(11), 2647–2663. https://doi.org/10.1002/esp.4920 (2020).
Aðalgeirsdóttir, G. et al. Glacier changes in Iceland from ∼1890 to 2019. Front. Earth Sci. 8, 523646. https://doi.org/10.3389/feart.2020.523646 (2020).
Compagno, L., Zekollari, H., Huss, M. & Farinotti, D. Limited impact of climate forcing products on future glacier evolution in Scandinavia and Iceland. J. Glaciol. 67(264), 727–743. https://doi.org/10.1017/jog.2021.24 (2021).
Thórhallsdóttir, T. E. & Svavarsdóttir, K. The environmental history of Skeiðarársandur outwash plain, Iceland. J. N Atl. 43, 1–21. https://doi.org/10.3721/037.006.4303 (2022).
Jull, M. & McKenzie, D. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res. -Sol Ea. 101(B10), 21815–21828. https://doi.org/10.1029/96JB01308 (1996).
Slater, L., Jull, M., McKenzie, D. & Gronvöld, K. Deglaciation effects on mantle melting under Iceland: results from the northern volcanic zone. Earth Planet. Sc Lett. 164(1–2), 151–164. https://doi.org/10.1016/S0012-821X(98)00200-3 (1998).
Maclennan, J., Jull, M., McKenzie, D., Slater, L. & Grönvold, K. The link between volcanism and deglaciation in Iceland. Geochem. Geophy Geosy. 3(11), 1–25. https://doi.org/10.1029/2001GC000282 (2002).
Sinton, J., Grönvold, K. & Sæmundsson, K. Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochem. Geophy Geosy. 6(12), Q12009. https://doi.org/10.1029/2005GC001021 (2005).
Pagli, C. & Sigmundsson, F. Will present day glacier retreat increase volcanic activity? Stress induced by recent glacier retreat and its effect on magmatism at the Vatnajökull ice cap, Iceland. Geophys. Res. Lett. 35(9), L09304. https://doi.org/10.1029/2008GL033510 (2008).
Van Vliet-Lanoë, B. et al. Volcanoes and climate: the triggering of preboreal jökulhlaups in Iceland. Int. J. Earth Sci. 109, 847–876. https://doi.org/10.1007/s00531-020-01833-9 (2020).
Harrison, D., Ross, N., Russell, A. J. & Jones, S. J. Geophysical reconstruction of the late Holocene proximal proglacial landsystem at Skeiðarársandur, Southeast Iceland. J. Quaternary Sci. 38(6), 947–969. https://doi.org/10.1002/jqs.3518 (2023).
Björnsson, H. Subglacial lakes and jökulhlaups in Iceland. Global Planet. Change. 35, 255–271 (2002).
Global Volcanism Program. Report on Grimsvotn (Iceland) (eds. Crafford, A. E. & Venzke, E.). Bulletin of the Global Volcanism Network 47(3) (Smithsonian Institution, 2022). https://doi.org/10.5479/si.GVP.BGVN202203-373010
Conclusion of Grímsvötn glacial outburst flood. Ice cauldron formed south of Grímsfjall. https://en.vedur.is/about-imo/news/glacial-flood-jokulhlaup-has-started-from-grimsvotn (Icelandic Met Office, 23.01.2024).
Glacial outburst flood from Grímsvötn likely in progress. Gradual increase in seismic tremor associated with flooding recorded in Grímsfjall in recent days. https://en.vedur.is/about-imo/news/glacial-outburst-flood-from-grimsvotn-likely-in-progress (Icelandic Met Office, 13.01.2025).
Evans, D. J. A., Ewertowski, M. W. & Orton, C. The glacial landsystem of Hoffellsjökull, SE Iceland: contrasting geomorphological signatures of active temperate glacier recession driven by ice lobe and bed morphology. Geogr. Ann. A. 101(3), 249–276. https://doi.org/10.1080/04353676.2019.1631608 (2019).
Jewtuchowicz, S. The present-day marginal zone of Skeiðarárjökull. Geogr. Pol. 26, 115–138 (1973).
Klimek, K. Geomorphological and geological analysis of the proglacial area of the Skeiðarárjökull. Geogr. Pol. 26, 89–113 (1973).
Maizels, J. K. Palaeovelocity and palaeodischarge determination for coarse gravel deposits. In Background to Paleohydrology. A Perspective (ed. Gregory, K. J.) 101–139 (Wiley, 1983).
Olszewski, A. & Weckwerth, P. The morphogenesis of kettles in the Höfðabrekkujökull forefield, Mýrdalssandur, Iceland. Jökull. 47, 71–88 (1999).
Rushmer, E. L. Sedimentological and geomorphological impacts of the jökulhlaup (glacial outburst flood) in January 2002 at Kverkfjöll, Northern Iceland. Geogr. Ann. A. 88(1), 43–53. https://doi.org/10.1111/j.0435-3676.2006.00282.x (2006).
Burke, M. J., Woodward, J. & Russell, A. J. Sedimentary architecture of large-scale, jökulhlaup-generated, ice-block obstacle marks: examples from Skeiðarársandur, SE Iceland. Sediment. Geol. 227(1–4), 1–10. https://doi.org/10.1016/j.sedgeo.2010.03.001 (2010).
Høgaas, F. & Longva, O. Mega deposits and erosive features related to the glacial lake Nedre Glomsjø outburst flood, southeastern Norway. Quaternary Sci. Rev. 151, 273–291. https://doi.org/10.1016/j.quascirev.2016.09.015 (2016).
Weckwerth, P. et al. Late Weichselian glacier outburst floods in North-Eastern Poland: landform evidence and palaeohydraulic significance. Earth-Sci. Rev. 194, 216–233. https://doi.org/10.1016/j.earscirev.2019.05.006 (2019).
Russell, A. J. & Marren, P. M. A Younger Dryas (Loch Lomond Stadial) jökulhlaup deposit, Fort Augustus, Scotland. Boreas 27(4), 231–242. https://doi.org/10.1111/j.1502-3885.1998.tb01418.x (1998).
Boulton, G. S., Dongelmans, P., Punkari, M. & Broadgate, M. Palaeoglaciology of an ice sheet through a glacial cycle: the European ice sheet through the Weichselian. Quaternary Sci. Rev. 20(4), 591–625. https://doi.org/10.1016/S0277-3791(00)00160-8 (2001).
Baker, V. R. High-energy megafloods: planetary settings and sedimentary dynamics. In Flood and Megaflood Processes and Deposits: Recent and Ancient Examples (eds Martini, I., Baker, V. R. & Garzon, G.) 3–15 (Blackwell Science, 2002).
Colman, S. M. A fresh look at glacial floods. Science 296(5571), 1251–1252. https://doi.org/10.1126/science.1073377 (2002).
Fisher, T. G. Chronology of glacial Lake Agassiz meltwater routed to the Gulf of Mexico. Quaternary Res. 59(2), 271–276. https://doi.org/10.1016/S0033-5894(03)00011-5 (2003).
Szafraniec, J. E. Paleoflood marks in sandur morphometry as the result of the glacier surge (NW Poland). Hydrol. Res. 44(2), 264–280. https://doi.org/10.2166/nh.2012.151 (2013).
Piotrowski, J. A., Hermanowski, P. & Piechota, A. M. Meltwater discharge through the subglacial bed and its land-forming consequences from numerical experiments in the Polish lowland during the last glaciation. Earth Surf. Processes. 34(4), 481–492. https://doi.org/10.1002/esp.1728 (2009).
Pochocka-Szwarc, K. & Krzyszkowski, D. The outwash plain of Rospuda River valley – A record of depositional environments. Stud. Quat. 32(2), 63–78. https://doi.org/10.1515/squa-2015-0006 (2015).
Weckwerth, P. et al. What does transverse furrow train in scabland-like topography originate from? The unique records of upper-flow-regime bedforms of a glacial lake-outburst flood in NE Poland. Quatern Int. 617, 40–58. https://doi.org/10.1016/j.quaint.2021.05.015 (2022).
Weckwerth, P. & Wysota, W. Unique landscape originated by cataclysmic glacial floods at the Weichselian glaciation decline in North-Eastern Poland. In Landscapes and Landforms of Poland (eds Migoń, P. & Jancewicz, K.) 665–685. https://doi.org/10.1007/978-3-031-45762-3_39 (Springer, 2024).
Weckwerth, P. et al. Evolutionary model for glacial lake-outburst fans at the ice-sheet front: development of meltwater outlets and origins of bedforms. Geomorphology 453, 109125. https://doi.org/10.1016/j.geomorph.2024.109125 (2024).
Panin, A. V. et al. Middle and Late Quaternary glacial lake-outburst floods, drainage diversions and reorganization of fluvial systems in northwestern Eurasia. Earth-Sci. Rev. 201, 103069. https://doi.org/10.1016/j.earscirev.2019.103069 (2020).
Mleczak, M. & Pisarska-Jamroży, M. A record of deglaciation-related shifting of the proximal zone of a sandur — a case study from the Gwda sandur, NW Poland (MIS 2). J. Palaeogeogr. 10, 12. https://doi.org/10.1186/s42501-021-00089-x (2021).
Salamon, T. & Mendecki, M. A rare signature of subglacial outburst floods developed along structural ice weaknesses in the Southern sector of the Scandinavian Ice Sheet during the Drenthian Glaciation, S Poland. Geomorphology 378, 107593. https://doi.org/10.1016/j.geomorph.2021.107593 (2021).
Frydrych, M. & Rdzany, Z. Glacial outburst flood in the marginal zone of the Wartanian Glaciation: an example from Adamów, central Poland. Quatern Int. 617, 21–39. https://doi.org/10.1016/j.quaint.2021.08.014 (2022).
Van Loon, A. J., Błaszkiewicz, M. & Degórski, M. The role of permafrost in shaping the Late Glacial relief of northern Poland. Neth. J. Geosci. 91(1–2), 223–231. https://doi.org/10.1017/S001677460000161X (2012).
Bukowska-Jania, E. Rola Systemu Lodowcowego w Obiegu Węglanu Wapnia w Środowisku Przyrodniczym = The Role of the Glacial System in the Calcium Carbonate Cycle in the Natural Environment (University of Silesia in Katowice Press, 2003) (in Polish).
Jørgensen, F. & Sandersen, P. B. E. Buried and open tunnel valleys in Denmark—erosion beneath multiple ice sheets. Quaternary Sci. Rev. 25, 1339–1363. https://doi.org/10.1016/j.quascirev.2005.11.006 (2006).
Fay, H. Formation of ice-block obstacle marks during the November 1996 glacier-outburst flood (jökulhlaup), Skeiðarársandur, Southern Iceland. In Flood and Megaflood Processes and Deposits: Recent and Ancient Examples (eds Martini, P., Baker, V. R. & Garzón, G.) 85–97. https://doi.org/10.1002/9781444304299.ch6 (Blackwell Science, 2002).
Russell, A. J. Obstacle marks produced by flow around stranded ice blocks during a glacier outburst flood (jökulhlaup) in West Greenland. Sedimentology 40(6), 1091–1111. https://doi.org/10.1111/j.1365-3091.1993.tb01381.x (1993).
Klimek, K. Charakterystyka rzeźby i paleografii północnej części międzyrzecza Piławy–Płytnicy = Relief and palaeographic characteristics of the northern part of the Piława–Płytnica interfluve. In Studia nad Środowiskiem Geograficznym Bornego Sulinowa = Studies on the Geographical Environment of Borne Sulinowo (eds. Bukowska-Jania, E. & Pulina, M.) 75–87 (Wydawnictwo Naukowe PWN, 1997). (in Polish).
Błaszkiewicz, M. Timing of the final disappearance of permafrost in the central European Lowland, as reconstructed from the evolution of lakes in N Poland. Geol. Q. 55(4), 361–374 (2011).
Harris, C. & Murton, J. B. Interactions between glaciers and permafrost: an introduction. In Cryospheric Systems: Glaciers and Permafrost (eds. Harris, C. & Murton, J. B.) 1–9 (Geological Society of London, 2005). https://doi.org/10.1144/GSL.SP.2005.242.01.01.
Szewczyk, J. & Nawrocki, J. Deep-seated relict permafrost in northeastern Poland. Boreas 40(3), 385–388. https://doi.org/10.1111/j.1502-3885.2011.00218.x (2011).
Szewczyk, J. The deep-seated relict permafrost from the Suwałki region (NE Poland) – analysis of conditions of its development and preservation. Geol. Q. 61(4), 845–858. https://doi.org/10.7306/gq.1378 (2017).
Kozarski, S. Oriented kettle holes in outwash plains. Quaest Geogr. 2, 99–112 (1975).
Wiśniewski, E. & Karczewski, A. O rzeźbie sandrów utworzonych na lodzie = about the relief of sandur surfaces created on the ice. Prz Geograficzny. 50(2), 269–292 (1978). (in Polish).
Boulton, G. S. The development of a complex supraglacial moraine at the margin of Sørbreen, Ny Friesland, Vestspitsbergen. J. Glaciol. 6(47), 717–735. https://doi.org/10.3189/S0022143000019961 (1967).
Bukowska-Jania, E. & Szafraniec, J. Distribution and morphometric characteristics of icing fields in Svalbard. Polar Res. 24(1–2), 41–53. https://doi.org/10.3402/polar.v24i1.6252 (2005).
Szafraniec, J. Sandry Jako Wskaźnik Charakteru Odpływu Subglacjalnego Lądolodu Wisły na Pomorzu w Świetle Współczesnych Procesów na Spitsbergenie i Islandii = Sandur Surfaces as an Indicator of the Subglacial Drainage Nature of the Weichselian Ice Sheet in Pomerania in the Light of Contemporary Processes in Spitsbergen and Iceland. PhD dissertation (University of Silesia in Katowice, 2009) (in Polish).
Russell, A. J. et al. Morphology and sedimentology of a giant supraglacial, ice-walled, jökulhlaup channel, Skeiðarárjökull, Iceland: implications for esker genesis. Global Planet. Change. 28(1–4), 193–216. https://doi.org/10.1016/S0921-8181(00)00073-4 (2001).
Björnsson, H., Pálsson. F., Sigurđsson, O. & Flowers, G. E. Surges of glaciers in Iceland. Ann. Glaciol 36, 82–90. https://doi.org/10.3189/172756403781816365 (2003).
Björnsson, H., Pálsson, F. & Icelandic glaciers. Jökull 58, 365–386. https://doi.org/10.33799/jokull2008.58.365 (2008).
Sigurðsson, O. 10. Variations of termini of glaciers in Iceland in recent centuries and their connection with climate. Dev. Quat. Sci. 5, 241–255. https://doi.org/10.1016/S1571-0866(05)80012-0 (2005).
Price, R. J. The development and destruction of a sandur, Breidamerkurjökull, Iceland. Arct. Alp. Res. 3(3), 225–237. https://doi.org/10.1080/00040851.1971.12003613 (1971).
Tómasson, H. The jökulhlaup from Katla in 1918. Ann. Glaciol. 22, 249–254. https://doi.org/10.3189/1996AoG22-1-249-254 (1996).
Roberts, M. J., Russell, A. J., Tweed, F. S. & Knudsen, Ó. Rapid sediment entrainment and englacial deposition during jökulhlaups. J. Glaciol. 46(153), 349–351. https://doi.org/10.3189/172756500781832936 (2000).
Russell, A. J. & Knudsen, Ó. Controls on the sedimentology of the November 1996 jökulhlaup deposits, Skeiðarársandur, Iceland. In Fluvial Sedimentology VI (eds Smith, N. D. & Rogers, J.) 315–329. https://doi.org/10.1002/9781444304213.ch23 (Blackwell, 1999).
Roberts, M. J. Jökulhlaups: A reassessment of floodwater flow through glaciers. Rev. Geophys. 43(1), RG1002. https://doi.org/10.1029/2003RG000147 (2005).
Russell, A. J. et al. Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and geomorphology. Geomorphology 75(1–2), 33–64. https://doi.org/10.1016/j.geomorph.2005.05.018 (2006).
Blauvelt, D. J. et al. Controls on jökulhlaup-transported buried ice melt-out at Skeiðarársandur, Iceland: implications for the evolution of ice-marginal environments. Geomorphology 360, 107164. https://doi.org/10.1016/j.geomorph.2020.107164 (2020).
Maizels, J. Boulder ring structures produced during jökulhlaup flows. Origin and hydraulic significance. Geogr. Ann. A. 74(1), 21–33. https://doi.org/10.1080/04353676.1992.11880346 (1992).
Branney, M. J. Downsag and extension at calderas: new perspectives on collapse geometries from ice-melt, mining, and volcanic subsidence. Bull. Volcanol. 57, 303–318. https://doi.org/10.1007/BF00301290 (1995).
Krüger, J. & Kjær, K. H. De-icing progression of ice-cored moraines in a humid, subpolar climate, Kötlujökull, Iceland. Holocene 10(6), 737–747. https://doi.org/10.1191/09596830094980 (2000).
Maizels, J. K. Experiments on the origin of kettle-holes. J. Glaciol. 18(79), 291–303. https://doi.org/10.3189/S0022143000021365 (1977).
Russell, A. J. & Knudsen, Ó. The effects of glacier-outburst flood flow dynamics on ice-contact deposits: November 1996 jökulhlaup, Skeiðarársandur, Iceland. In Flood and Megaflood Processes and Deposits: Recent and Ancient Examples (eds Martini, P., Baker, V. R. & Garzón, G.) 67–83. https://doi.org/10.1002/9781444304299.ch5 (Blackwell Science, 2002).
Semper, S. et al. The Iceland-Faroe Slope Jet: a conduit for dense water toward the Faroe Bank Channel overflow. Nat. Commun. 11, 5390. https://doi.org/10.1038/s41467-020-19049-5 (2020).
QGIS Development Team, QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2025). http://qgis.osgeo.org
Foresta, L. et al. Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat-2 altimetry. Geophys. Res. Lett. 43(23), 12138–12145. https://doi.org/10.1002/2016GL071485 (2016).
Huang, J. et al. Sources and upstream pathways of the densest overflow water in the Nordic Seas. Nat. Commun. 11, 5389. https://doi.org/10.1038/s41467-020-19050-y (2020).
Szafraniec, J. E. Data sets of annual aeolian accumulation rate in Skeiðarársandur kettle holes (S Iceland) in 2021/2022–2023/2024 (Ver. 1.0). Zenodo https://doi.org/10.5281/zenodo.14852374 (2025). [Data set].
Microsoft Corporation. Microsoft Office LTSC Professional Plus 2021 – Excel, wersja 2108. (2021). https://www.microsoft.com
Marteinsdóttir, B., Svavarsdóttir, K. & Thórhallsdóttir, T. E. Development of vegetation patterns in early primary succession. J. Veg. Sci. 21(3), 531–540. https://doi.org/10.1111/j.1654-1103.2009.01161.x (2010).
Anamthawat-Jónsson, K., Karlsdóttir, L., Thórsson, Æ. T. & Hallsdóttir, M. Microscopical palynology: Birch woodland expansion and species hybridisation coincide with periods of climate warming during the Holocene epoch in Iceland. J. Microsc. 291(1), 128–141. https://doi.org/10.1111/jmi.13175 (2023).
Olafsson, H. & Rousta, I. Influence of atmospheric patterns and North Atlantic Oscillation (NAO) on vegetation dynamics in Iceland using Remote Sensing. Eur. J. Remote Sens. 53(1), 351–363. https://doi.org/10.1080/22797254.2021.1931462 (2021).
Jóhannesson, T. et al. Ice-volume changes, bias estimation of mass-balance measurements and changes in subglacial lakes derived by lidar mapping of the surface of Icelandic glaciers. Ann. Glaciol. 54(63), 63–74. https://doi.org/10.3189/2013AoG63A422 (2013).
Xi, C., Zuo, H., Yan, M. & Yan, Y. Grain size characteristics of different types of surface sediments around Qixing Lake in Kubuqi Desert. Front. Environ. Sci. 12, 1409260. https://doi.org/10.3389/fenvs.2024.1409260 (2024).
Folk, R. L. & Ward, W. C. Brazos River bar: a study in the significance of grain size parameters. J. Sediment. Petrol. 27(1), 2–26 (1957).
Visher, G. S. Grain size distributions and depositional processes. J. Sediment. Petrol. 39(3), 1074–1106. https://doi.org/10.1306/74d71d9d-2b21-11d7-8648000102c1865d (1969).
Szmańda, J. B. Grain transport conditions – comparison of interpretation on C/M diagram and analysis on cumulative curve diagram. Case study – overbank alluvia of the Vistula River, Toruń, Poland In Rekonstrukcja Dynamiki Procesów Geomorfologicznych – Formy Rzeźby I Osady = Reconstruction of the Dynamics of Geomorphological Processes – Landforms and Deposits (eds Smolska, E. & Giriat, D.) 367–376 (University of Warsaw, 2007). (abstract in English).
Wang, C. et al. Comparison between satellite derived solar-induced chlorophyll fluorescence, NDVI and kNDVI in detecting water stress for dense vegetation across Southern China. Remote Sens. 16(10), 1735. https://doi.org/10.3390/rs16101735 (2024).
Zhao, D., Hu, W., Wang, J. & Liu, J. Driving factors for vegetation NDVI changes in a cold temperate zone: climate, topography, and land use. Forests 15(12), 2098. https://doi.org/10.3390/f15122098 (2024).
Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model. Dev. 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015 (2015).
Karsznia, I. & Leszczuk, M. Kontekstowa generalizacja konturów zabudowy z wykorzystaniem narzędzi morfologii matematycznej = Context-dependent buildings generalisation based on mathematical morphology operations. Rocz Geomatyki XV. –2(77), 187–200 (2017). (in Polish).
Szafraniec, J. E. A dataset of high-resolution digital elevation models of the Skeiðarársandur kettle holes, Southern Iceland. Sci. Data. 11, 660. https://doi.org/10.1038/s41597-024-03515-6 (2024).
Szafraniec, J. E. Database of the digital elevation models of the Skeiðarársandur kettle-holes (S Iceland), June 2022 – PART I. Zenodo (2022). https://doi.org/10.5281/zenodo.7449082
Cignoni, P. et al. MeshLab: an open-source mesh processing tool. In Sixth Eurographics Italian Chapter Conference, Salerno, Italy (2008).
Golden Software, LLC. Grapher 11. (2014). https://www.goldensoftware.com/products/grapher/
Dagsson-Waldhauserova, P., Arnalds, O. & Olafsson, H. Long-term variability of dust events in Iceland (1949–2011). Atmos. Chem. Phys. 14, 13411–13422. https://doi.org/10.5194/acp-14-13411-2014 (2014).
Gosseling, M. Icelandic Meteorological Office report No. VÍ 2017-009: CORDEX climate trends for Iceland in the 21st century. (2017).
Farbrot, H. et al. Thermal characteristics and impact of climate change on mountain permafrost in Iceland. J. Geophys. Res. -Earth. 112, F03S90. https://doi.org/10.1029/2006JF000541 (2007).
Anderson, N. J. et al. The Arctic in the twenty-first century: changing biogeochemical linkages across a paraglacial landscape of Greenland. Bioscence 67(2), 118–133. https://doi.org/10.1093/biosci/biw158 (2017).
Ágústsson, H., Cuxart, J., Mira, A. & Ólafsson, H. Observations and simulation of katabatic flows during a heatwave in Iceland. Meteorol. Z. 16(1), 99–110. https://doi.org/10.1127/0941-2948/2007/0189 (2007).
Delmonte, B. et al. Aeolian dust in the Talos Dome ice core (East antarctica, Pacific/Ross Sea sector): Victoria Land versus remote sources over the last two climate cycles. J. Quaternary Sci. 25(8), 1327–1337. https://doi.org/10.1002/jqs.1418 (2010).
Aarons, S. M. et al. Dust composition changes from Taylor Glacier (East Antarctica) during the last glacial-interglacial transition: A multi-proxy approach. Quaternary Sci. Rev. 162, 60–71. https://doi.org/10.1016/j.quascirev.2017.03.011 (2017).
Wan, D., Jin, Z. & Wang, Y. Geochemistry of eolian dust and its elemental contribution to Lake Qinghai sediment. Appl. Geochem. 27(8), 1546–1555. https://doi.org/10.1016/j.apgeochem.2012.03.009 (2012).
Alsos, I. G. et al. Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnám) AD 870. Quaternary Sci. Rev. 259, 106903. https://doi.org/10.1016/j.quascirev.2021.106903 (2021).
Burke, M. J., Woodward, J., Russell, A. J., Fleisher, P. J. & Bailey, P. K. Controls on the sedimentary architecture of a single event englacial esker: Skeiðarárjökull, Iceland. Quaternary Sci. Rev. 27(19–20), 1829–1847. https://doi.org/10.1016/j.quascirev.2008.06.012 (2008).
Runnström, M. C., Ólafsdóttir, R., Blanke, J. & Berlin, B. Image analysis to monitor experimental trampling and vegetation recovery in Icelandic plant communities. Environments 6(9), 99. https://doi.org/10.3390/environments6090099 (2019).
Marteinsdóttir, B., Svavarsdóttir, K. & Thórhallsdóttir, T. E. Multiple mechanisms of early plant community assembly with stochasticity driving the process. Ecology 99(1), 91–102. https://doi.org/10.1002/ecy.2079 (2018).
Óskarsdóttir, G. Successes and Failures Following Long-Distance Dispersal: Dynamics of Mountain Birch (Betula pubescens ssp. tortuosa) on a Glacial Outwash Plain. PhD dissertation (University of Iceland, 2024).
Hay, A. S., Powell, D. M., Carr, A. S. & Livingstone, I. Characterisation of aeolian sediment accumulation and preservation across complex topography. Geomorphology 383, 107704. https://doi.org/10.1016/j.geomorph.2021.107704 (2021).
Mountney, N. P. & Russell, A. J. Sedimentology of cold-climate aeolian sandsheet deposits in the Askja region of northeast Iceland. Sediment. Geol. 166(3–4), 223–244. https://doi.org/10.1016/j.sedgeo.2003.12.007 (2004).
Flowers, G. E., Marshall, S. J., Björnsson, H. & Clarke, G. K. C. Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next 2 centuries. J. Geophys. Res. -Earth. 110, F02011. https://doi.org/10.1029/2004JF000200 (2005).
Cieśliński, R., Major, M. & Pietruszyński, Ł. Chemical composition of kettle holes as an indicator of salinity of small water bodies in northern Poland (the Parsęta catchment, the Borucinka drainage basin). Geochem. J. 54(2), 43–56. https://doi.org/10.2343/geochemj.2.0581 (2020).
Stebel, A. & Nejfeld, P. Bryophytes of the ‘Retno’ Nature Reserve (Brodnickie Lake District, N Poland). Acta Mus. Sil Sci. Nat. 69(1), 93–96. https://doi.org/10.2478/cszma-2020-0008 (2020).
Savić, B. et al. Assessing the role of kettle holes for providing and connecting amphibian habitats in agricultural landscapes. Land 10(7), 692. https://doi.org/10.3390/land10070692 (2021).
Gerling, M., Pätzig, M., Hempel, L., Büttner, C. & Müller, M. E. H. Arable weeds at the edges of kettle holes as overwintering habitat for phytopathogenic fungi. Agronomy 12(4), 823. https://doi.org/10.3390/agronomy12040823 (2022).
Reverey, F., Grossart, H. P., Premke, K. & Lischeid, G. Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review. Hydrobiologia 775, 1–20. https://doi.org/10.1007/s10750-016-2715-9 (2016).
Hautala, R. & Kulmala, J. How erosion and other natural forces have changed the Icelandic landscape – is Nootka lupine fixing any of these problems? Suo 74(1–2), 119–127 (2023).