Nega, M., Braun, B., Künzel, S. & Szewzyk, U. Evaluating the impact of wastewater effluent on microbial communities in the panke, an urban river. Water 2019. 11 (5), 888. https://doi.org/10.3390/W11050888 (Apr. 2019). Page 888.
Su, Z., Chen, L. & Wen, D. Impact of wastewater treatment plant effluent discharge on the antibiotic resistome in downstream aquatic environments: a mini review. Front. Environ. Sci. Eng. 2024. 183, 18, (3), 1–11. https://doi.org/10.1007/S11783-024-1796-3 (Nov. 2023).
Vaquer-Sunyer, R. et al. Aug., ‘Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea’, Biogeosciences, vol. 13, no. 16, pp. 4751–4765, (2016). https://doi.org/10.5194/BG-13-4751-2016
Bachy, C. et al. Marine Protists: A Hitchhiker’s Guide To their Role in the Marine Microbiomepp. 159–241 (Springer, 2022). https://doi.org/10.1007/978-3-030-90383-1_4
Wetzel, R. G. ‘Protists: Key Ecosystem Regulators’, BioScience, vol. 51, no. 12, p. 997, doi: 10.1641/0006-3568(2001)051[0997:PKER]2.0.CO;2. (2001).
Maritz, J. M., Eyck, T. A. T., Elizabeth Alter, S. & Carlton, J. M. •and ‘Patterns of protist diversity associated with raw sewage in New York City’, ISME J., vol. 13, pp. 2750–2763, (2019). https://doi.org/10.1038/s41396-019-0467-z
Moore, J. W. & Schindler, D. E. ‘Getting ahead of climate change for ecological adaptation and resilience’, Science, vol. 376, no. 6600, pp. 1421–1426, Jun. (2022). https://doi.org/10.1126/SCIENCE.ABO3608
Cuprys, A., Lecka, J. & Brar, S. K. ‘Characterization and dynamic shift of microbial communities in wastewater treatment plant’, in Genomics of Antibiotic Resistant Bacteria in Industrial Waste Water Treatment, Springer International Publishing, pp. 133–155. Accessed: Aug. 23, 2024. [Online]. Available: https://link.springer.com/chapter/ (2023). https://doi.org/10.1007/978-3-031-44618-4_7
Obayomi, O. et al. The combined effects of treated wastewater irrigation and plastic mulch cover on soil and crop microbial communities. Biol. Fertil. Soils. 56 (5), 729–742. https://doi.org/10.1007/S00374-020-01442-3/FIGURES/8 (Jul. 2020).
Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42 (3), 293–323. https://doi.org/10.1093/FEMSRE/FUY006 (May 2018).
Mitra, A. et al. Feb., ‘The role of mixotrophic protists in the biological carbon pump’, Biogeosciences, vol. 11, no. 4, pp. 995–1005, (2014). https://doi.org/10.5194/BG-11-995-2014
Ashbolt, N., Grabow, W. & Snozzi, M. Indicators of Microbial Water Quality (World Health Organization (WHO), Jan. 2001).
Harwood, V. J., Staley, C., Badgley, B. D., Borges, K. & Korajkic, A. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol. Rev. 38 (1), 1–40. https://doi.org/10.1111/1574-6976.12031 (Jan. 2014).
Sieber, G. et al. Exploring the efficacy of metabarcoding and non-target screening for detecting treated wastewater. Sci. Total Environ. 903, 167457. https://doi.org/10.1016/j.scitotenv.2023.167457 (Dec. 2023).
Moran, M. A. et al. Mar., ‘Deciphering ocean carbon in a changing world’, Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 12, pp. 3143–3151, (2016). https://doi.org/10.1073/pnas.1514645113
Poretsky, R. S., Gifford, S., Rinta-Kanto, J., Vila-Costa, M. & Moran, M. A. Analyzing gene expression from marine microbial communities using environmental transcriptomics. J. Vis. Exp. JoVE. no. 24, 1086. https://doi.org/10.3791/1086 (Feb. 2009).
Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean Microbiome. Science 353 (6305), 1272–1277. https://doi.org/10.1126/SCIENCE.AAF4507/SUPPL_FILE/LOUCA.SM.PDF (Sep. 2016).
Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. ‘A Guide to the Natural History of Freshwater Lake Bacteria’, Microbiol. Mol. Biol. Rev., vol. 75, no. 1, pp. 14–49, Mar. (2011). https://doi.org/10.1128/MMBR.00028-10/SUPPL_FILE/SUPPLEMENTAL_TABLE_2.ZIP
Shade, A. et al. Conditionally rare taxa disproportionately contribute to Temporal changes in microbial diversity’, mBio. Jul 5 (4), 1371–1385. https://doi.org/10.1128/MBIO.01371-14/SUPPL_FILE/MBO004141898S1.DOCX (2014).
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677. https://doi.org/10.1093/nar/gkae909 (Jan. 2025).
Grossart, H. P., Massana, R., McMahon, K. D. & Walsh, D. A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol. Oceanogr. 65, S2–S20. https://doi.org/10.1002/lno.11382 (2020).
Berdjeb, L., Parada, A., Needham, D. M. & Fuhrman, J. A. ‘Short-term dynamics and interactions of marine protist communities during the spring–summer transition’, ISME J., vol. 12, no. 8, pp. 1907–1917, Aug. (2018). https://doi.org/10.1038/s41396-018-0097-x
Paerl, H. W. et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res. 45 (5), 1973–1983. https://doi.org/10.1016/j.watres.2010.09.018 (Feb. 2011).
Jekel, M. et al. Apr., ‘Selection of organic process and source indicator substances for the anthropogenically influenced water cycle’, Chemosphere, vol. 125, pp. 155–167, (2015). https://doi.org/10.1016/j.chemosphere.2014.12.025
Snyder, S. A., Westerhoff, P., Yoon, Y. & Sedlak, D. L. ‘Pharmaceuticals, Personal Care Products, and Endocrine Disruptors in Water: Implications for the Water Industry’, Environ. Eng. Sci., vol. 20, no. 5, pp. 449–469, Sep. (2003). https://doi.org/10.1089/109287503768335931
Verlicchi, P., Aukidy, M. A. & Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 429, 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028 (Jul. 2012).
Yang, Y., Ok, Y. S., Kim, K. H., Kwon, E. E. & Tsang, Y. F. ‘Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review’, Sci. Total Environ., vol. 596–597, pp. 303–320, Oct. (2017). https://doi.org/10.1016/j.scitotenv.2017.04.102
Hering, D. et al. Sep., ‘The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future’, Sci. Total Environ., vol. 408, no. 19, pp. 4007–4019, (2010). https://doi.org/10.1016/j.scitotenv.2010.05.031
Jia, S., Li, T. & Zhang, X. X. ‘Integrated metagenomic and metatranscriptomic analyses of ultraviolet disinfection effects on antibiotic resistance genes and bacterial communities during wastewater treatment’, Ecotoxicology, vol. 30, no. 8, pp. 1610–1619, Oct. (2021). https://doi.org/10.1007/s10646-020-02313-1
Liu, Z. et al. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environ. Int. 129, 208–220. https://doi.org/10.1016/j.envint.2019.05.036 (Aug. 2019).
Cai, L., Ju, F. & Zhang, T. Tracking human sewage Microbiome in a municipal wastewater treatment plant. Appl. Microbiol. Biotechnol. 98 (7), 3317–3326. https://doi.org/10.1007/s00253-013-5402-z (Apr. 2014).
Maritz, J. M. et al. An 18S rRNA workflow for characterizing protists in sewage, with a focus on zoonotic trichomonads. Microb. Ecol. 74 (4), 923–936. https://doi.org/10.1007/s00248-017-0996-9 (2017).
Ju, F. et al. Feb., ‘Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes’, ISME J., vol. 13, no. 2, pp. 346–360, (2019). https://doi.org/10.1038/s41396-018-0277-8
Yang, Y. et al. Metagenomic insights into the abundance and composition of resistance genes in aquatic environments: influence of stratification and geography. Environ. Int. 127, 371–380. https://doi.org/10.1016/j.envint.2019.03.062 (Jun. 2019).
Hernández, F., Ibáñez, M., Gracia-Lor, E., Sancho, J. V. & ‘Retrospective LC-QTOF-MS analysis searching for pharmaceutical metabolites in urban wastewater’, J. Sep. Sci., vol. 34, no. 24, pp. 3517–3526, Dec. (2011). https://doi.org/10.1002/jssc.201100540
Schymanski, E. L. et al. Strategies to characterize Polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ. Sci. Technol. 48 (3), 1811–1818. https://doi.org/10.1021/es4044374 (Feb. 2014).
Motteau, S., Deborde, M. & Gombert, B. Karpel vel leitner, ‘Non-target analysis for water characterization: wastewater treatment impact and selection of relevant features’. Environ. Sci. Pollut Res. 31 (3), 4154–4173. https://doi.org/10.1007/s11356-023-30972-0 (Jan. 2024).
Hollender, J., Schymanski, E. L., Singer, H. P. & Ferguson, P. L. Nontarget screening with high resolution mass spectrometry in the environment: ready to go?? Environ. Sci. Technol. 51 (20), 11505–11512. https://doi.org/10.1021/acs.est.7b02184 (Oct. 2017).
Carpenter, C. M. G., Wong, L. Y. J., Johnson, C. A. & Helbling, D. E. ‘Fall Creek Monitoring Station: Highly Resolved Temporal Sampling to Prioritize the Identification of Nontarget Micropollutants in a Small Stream’, Environ. Sci. Technol., vol. 53, no. 1, pp. 77–87, Jan. (2019). https://doi.org/10.1021/acs.est.8b05320
Beckers, L. M. et al. ‘Unraveling longitudinal pollution patterns of organic micropollutants in a river by non-target screening and cluster analysis’, Sci. Total Environ., vol. 727, p. 138388, Jul. (2020). https://doi.org/10.1016/j.scitotenv.2020.138388
Vandegrift, J. et al. ‘Overview of Monitoring Techniques for Evaluating Water Quality at Potable Reuse Treatment Facilities’, J. – Am. Water Works Assoc., vol. 111, no. 7, pp. 12–23, Jul. (2019). https://doi.org/10.1002/awwa.1320
Chakraborty, J. et al. Metagenome sequencing to unveil microbial community composition and prevalence of antibiotic and metal resistance genes in hypersaline and hyperalkaline Lonar lake. India’ Ecol. Indic. 110, 105827. https://doi.org/10.1016/j.ecolind.2019.105827 (Mar. 2020).
Samson, R. et al. Jul., ‘Metagenomic insights to understand transient influence of Yamuna River on taxonomic and functional aspects of bacterial and archaeal communities of River Ganges’, Sci. Total Environ., vol. 674, pp. 288–299, (2019). https://doi.org/10.1016/j.scitotenv.2019.04.166
Franzosa, E. A. et al. Jun., ‘Sequencing and beyond: integrating molecular omics for microbial community profiling’, Nat. Rev. Microbiol., vol. 13, no. 6, pp. 360–372, (2015). https://doi.org/10.1038/nrmicro3451
Smith, C. J. & Osborn, A. M. ‘Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology’, FEMS Microbiol. Ecol., vol. 67, no. 1, pp. 6–20, Jan. (2009). https://doi.org/10.1111/j.1574-6941.2008.00629.x
Gonçalves, J. et al. Microbial contamination of environmental waters and wastewater: detection methods and treatment technologies. Mod. Approaches Waste Bioremediat. 461–483. https://doi.org/10.1007/978-3-031-24086-7_22 (2023).
Ding, J. et al. The treatment of aquaculture wastewater with biological aerated filters: from the treatment process to the microbial mechanism. Toxics 2023. 11 Page 478, 11, (6), 478. https://doi.org/10.3390/TOXICS11060478 (May 2023).
Rodríguez, E., García-Encina, P. A., Stams, A. J. M., Maphosa, F. & Sousa, D. Z. Meta-omics approaches to understand and improve wastewater treatment systems. Rev. Environ. Sci. Biotechnol. 14 (3), 385–406. https://doi.org/10.1007/S11157-015-9370-X/FIGURES/5 (Sep. 2015).
Bhaduri, D. et al. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front. Microbiol. 13, 938481. https://doi.org/10.3389/FMICB.2022.938481/BIBTEX (Aug. 2022).
Glasl, B. et al. ‘Microbial indicators of environmental perturbations in coral reef ecosystems’, Microbiome, vol. 7, no. 1, pp. 1–13, Jun. (2019). https://doi.org/10.1186/S40168-019-0705-7/FIGURES/5
Utobo, E. B., Tewari, L. & ‘SOIL ENZYMES AS BIOINDICATORS OF SOIL ECOSYSTEM STATUS’., (2015). https://doi.org/10.15666/aeer/1301_147169
Schuijt, L. M., Peng, F. J., van den Berg, S. J. P., Dingemans, M. M. L. & Van den Brink, P. J. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: facts, challenges, and future. Sci. Total Environ. 795, 148776. https://doi.org/10.1016/J.SCITOTENV.2021.148776 (Nov. 2021).
Louca, S. et al. ‘Function and functional redundancy in microbial systems’, Nat. Ecol. Evol. vol. 2, no. 6, pp. 936–943, Apr. 2018, (2018). 26 https://doi.org/10.1038/s41559-018-0519-1
Allison, S. D. & Martiny, J. B. H. ‘Resistance, resilience, and redundancy in microbial communities’, Light Evol., vol. 2, pp. 149–166, (2009). https://doi.org/10.17226/12501
Harth, F. U. R. et al. Nov., ‘Small but with big impact? Ecotoxicological effects of a municipal wastewater effluent on a small creek’, J. Environ. Sci. Health Part A, vol. 53, no. 13, pp. 1149–1160, (2018). https://doi.org/10.1080/10934529.2018.1530328
Kuzniar, A., van Ham, R. C. H. J., Pongor, S. & Leunissen, J. A. M. ‘The quest for orthologs: finding the corresponding gene across genomes’, Trends Genet., vol. 24, no. 11, pp. 539–551, Nov. (2008). https://doi.org/10.1016/j.tig.2008.08.009
Shaye, D. D., Greenwald, I. & ‘OrthoList A compendium of C. elegans genes with human orthologs’, PLOS ONE, 6, 5, p. e20085, (2011). https://doi.org/10.1371/JOURNAL.PONE.0020085
Singh, A. H., Wolf, D. M., Wang, P. & Arkin, A. P. ‘Modularity of stress response evolution’, Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 21, pp. 7500–7505, May (2008). https://doi.org/10.1073/pnas.0709764105
Steurer, B. et al. May., ‘Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II’, Proc. Natl. Acad. Sci., vol. 115, no. 19, (2018). https://doi.org/10.1073/pnas.1717920115
Izard, J. et al. A synthetic growth switch based on controlled expression of RNA polymerase. Mol. Syst. Biol. Nov. https://doi.org/10.15252/msb.20156382 (2015).
Jin, D. J., Cagliero, C. & Zhou, Y. N. ‘Role of RNA polymerase and transcription in the organization of the bacterial nucleoid’, Chem. Rev., vol. 113, no. 11, pp. 8662–8682, Nov. https://doi.org/10.1021/CR4001429/ASSET/IMAGES/MEDIUM/CR-2013-001429_0020.GIF (2013).
Han, Y. et al. Dec., ‘Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms’, Microbiome, vol. 9, no. 1, p. 71, (2021). https://doi.org/10.1186/s40168-021-01022-z
Liu, Q. et al. Multi-omics analysis of nitrifying sludge under carbon disulfide stress: nitrification performance and molecular mechanisms. Water Res. 258, 121780. https://doi.org/10.1016/J.WATRES.2024.121780 (Jul. 2024).
Anantharaman, V., Iyer, L. M. & Aravind, L. ‘Comparative genomics of protists: New insights into the evolution of eukaryotic signal transduction and gene regulation’, Annu. Rev. Microbiol., vol. 61, no. Volume 61, pp. 453–475, Oct. 2007, (2007). https://doi.org/10.1146/ANNUREV.MICRO.61.080706.093309/CITE/REFWORKS
Jauzein, C. & Erdner, D. L. ‘Stress-related Responses in Alexandrium tamarense Cells Exposed to Environmental Changes’, J. Eukaryot. Microbiol., vol. 60, no. 5, pp. 526–538, Sep. (2013). https://doi.org/10.1111/JEU.12065
Slaveykova, V., Sonntag, B. & Gutiérrez, J. C. Stress and protists: no life without stress. Eur. J. Protistol. 55, 39–49. https://doi.org/10.1016/J.EJOP.2016.06.001 (Aug. 2016).
Graupner, N. et al. Effects of short-term flooding on aquatic and terrestrial microeukaryotic communities: A mesocosm approach. Aquat. Microb. Ecol. 80 (3), 257–272. https://doi.org/10.3354/ame01853 (2017).
Stach, T. L. et al. ‘Temporal disturbance of a model stream ecosystem by high microbial diversity from treated wastewater’, MicrobiologyOpen, vol. 12, no. 2, p. e1347, (2023). https://doi.org/10.1002/mbo3.1347
Beisser, D. et al. ‘TaxMapper: an analysis tool, reference database and workflow for metatranscriptome analysis of eukaryotic microorganisms’, BMC Genomics, 18, 1, pp. 5–9, (2017). https://doi.org/10.1186/s12864-017-4168-6
Andrew, S. & Babraham Bioinformatics – FastQC A Quality Control tool for High Throughput Sequence Data. Accessed: Aug. 27, 2024. [Online]. (2010). Available: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. Oct., ‘MultiQC: summarize analysis results for multiple tools and samples in a single report’, bioinformatics, 32, 19, pp. 3047–3048, (2016). https://doi.org/10.1093/bioinformatics/btw354
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. Aug. https://doi.org/10.14806/ej.17.1.200 (2011).
Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. Sep., ‘rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data’, GigaScience, vol. 8, no. 9, p. giz100, (2019). https://doi.org/10.1093/gigascience/giz100
Wafula, E. K. et al. PlantTribes2: tools for comparative gene family analysis in plant genomics’, front. Plant. Sci. 13 https://doi.org/10.3389/fpls.2022.1011199 (Jan. 2023).
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. ‘Salmon provides fast and bias-aware quantification of transcript expression’, Nat. Methods, 14, 4, 417–419, doi: https://doi.org/10.1038/nmeth.4197.Apr. (2017).
Zhao, Y., Tang, H. & Ye, Y. Jan., ‘RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data’, Bioinformatics, vol. 28, no. 1, pp. 125–126, (2012). https://doi.org/10.1093/bioinformatics/btr595
Aramaki, T. et al. Apr., ‘KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold’, bioinformatics, 36, 7, pp. 2251–2252, (2020). https://doi.org/10.1093/bioinformatics/btz859
Love, M. I., Huber, W. & Anders, S. Dec., ‘Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2’, Genome Biol., vol. 15, no. 12, p. 550, (2014). https://doi.org/10.1186/s13059-014-0550-8
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (85), 2825–2830 (2011).
Nettleton, D. ‘Chapter 8 – Data analysis.’ In Commercial Data Mining (ed. Nettleton, D.) 119–136 (Morgan Kaufmann, 2014). https://doi.org/10.1016/B978-0-12-416602-8.00008-X.
Gu, Z. ‘Complex heatmap visualization’, iMeta, vol. 1, no. 3, p. e43, (2022). https://doi.org/10.1002/imt2.43
Shah, M. et al. Genome-resolved metagenomics reveals the effect of nutrient availability on bacterial genomic properties across 44 European freshwater lakes. Environ. Microbiol. 26 (6), e16634. https://doi.org/10.1111/1462-2920.16634 (2024).
Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. ‘GAGE: Generally applicable gene set enrichment for pathway analysis’, BMC Bioinform., 10, 1, 1–17, doi: https://doi.org/10.1186/1471-2105-10-161/FIGURES/5.May (2009).