Yan, B. et al. Inhibition of soil WindErosion and dust by shelterbelts in the hilly area of loess plateau and its influencing factors. Forests 15, 1413. https://doi.org/10.3390/f15081413 (2024).
Zare, S., Tavili, A. & Darini, M. J. Effects of different treatments on seed germination and breaking seed dormancy of Prosopis Koelziana and Prosopis juliflora. J. Res. 22, 35–38. https://doi.org/10.1007/s11676-011-0121-8 (2011).
Bhojvaid, P. P. & Timmer, V. R. Soil dynamics in an age sequence of Prosopis juliflora planted for sodic soil restoration in India. Ecol. Manage. 106, 181–193. https://doi.org/10.1016/S0378-1127(97)00310-1 (1998).
Emtahani, M. & Elmi, M. The ecological studies of Prosopis Koelziana in South of Iran. J. Desert. 1, 1–11 (2006).
Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911 (2008).
Parida, A. K. & Das, A. B. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60 (3), 324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010 (2005).
Maas, E. V. & Hoffman, G. J. Crop salt tolerance—current assessment. J. Irrig. Drain. Div. 103 (2), 115–134. https://doi.org/10.1061/JRCEE3 (1977).
Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 57 (5), 1017–1023. https://doi.org/10.1093/jxb/erj108 (2006).
Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New. Phytol. 179, 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x (2008).
Sghayar, S. et al. Seed priming mitigates high salinity impact on germination of bread wheat (Triticum aestivum L.) by improving carbohydrate and protein mobilization. Plant. Direct. 7, e497. https://doi.org/10.1002/pld3.497 (2023).
Ahmad, F. et al. I. R. Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidants, secondary metabolites and up-regulation of antiporter genes. Plant. Biol. 23, 113–121. https://doi.org/10.1111/plb.13187 (2021).
Hassan, M. U. et al. Zinc seed priming alleviates salinity stress and enhances sorghum growth by regulating antioxidant activities, nutrient homeostasis, and osmolyte synthesis. Agronomy 14, 1815. https://doi.org/10.3390/agronomy14081815 (2024).
Karimi, M. R., Sabokdast, M., Beheshti, K., Abbasi, H., Bihamta, M. R. & A. R. & Seed priming with Salicylic acid enhances salt stress tolerance by boosting antioxidant defense in Phaseolus vulgaris genotypes. BMC Plant. Biol. 25, 489. https://doi.org/10.1186/s12870-025-06376-2 (2025).
Hussain, S., Ahmed, S., Akram, W., Li, G. & Yasin, N. A. Selenium seed priming enhanced the growth of salt-stressed Brassica rapa L. through improving plant nutrition and the antioxidant system. Front. Plant. Sci. 13, 1050359. https://doi.org/10.3389/fpls.2022.1050359 (2023).
Guragain, R. P. et al. Impact of non-thermal plasma treatment on the seed germination and seedling development of Carrot (Daucus Carota sativus L). J. Phys. Commun. 5, 125011. https://doi.org/10.1088/2399-6528/ac4081 (2021).
Ghaemi, M., Majd, A. & Iranbakhsh, A. Transcriptional responses following seed priming with cold plasma and electromagnetic field in Salvia nemorosa L. J. Theor. Appl. Phys. 14, 323–328. https://doi.org/10.1007/s40094-020-00387-0 (2020).
Ghasemzadeh, N., Iranbakhsh, A., Oraghi-Ardebili, Z., Saadatmand, S. & Jahanbakhsh-Godehkahriz, S. Cold plasma can alleviate cadmium stress by optimizing growth and yield of wheat (Triticum aestivum L.) through changes in physio-biochemical properties and fatty acid profile. Environ. Sci Pollut Res. 29, 35897–35907. https://doi.org/10.1007/s11356-022-18630-3 (2022).
Burducea, I. et al. Helium atmospheric–pressure plasma jet effects on two cultivars of Triticum aestivum L. Foods 12, 208. https://doi.org/10.3390/foods12010208 (2023).
Los, A., Ziuzina, D., Boehm, D., Cullen, P. J. & Bourke, P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: effects on seed surface chemistry and characteristics. Plasma Process. Polym. 16 (4), 1800148. https://doi.org/10.1002/ppap.201800148 (2019).
Rasooli, Z., Barzin, G., Mahabadi, T. D. & Entezari, M. Stimulating effects of cold plasma seed priming on germination and seedling growth of Cumin plant. S Afr. J. Bot. 142, 106–113. https://doi.org/10.1016/j.sajb.2021.06.025 (2021).
Šerá, J., Kocourek, P., Čech, J. & Bezdíček, J. Effects of non-thermal plasma on seed germination and plant growth. Plasma Med. 1 (1), 1–12. https://doi.org/10.3390/plants10081616 (2010).
Jiang, J. et al. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci. Technol. 16, 54–58. https://doi.org/10.1088/1009-0630/16/1/12 (2014).
Sivachandiran, L. & Khacef, A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv. 7, 1822–1832. https://doi.org/10.1039/C6RA24762H (2017).
Ling, L. et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 4, 5859. https://doi.org/10.1038/srep05859 (2014).
Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 89–98. https://doi.org/10.1016/0003-9861(68)90654-1 (1969).
Fales, F. The assimilation and degradation of carbohydrates by yeast cells. J. Biol. Chem. 193 (1), 113–124. https://doi.org/10.1016/S0021-9258(19)52433-4 (1951).
Bates, L. S., Waldren, R. A. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant. Soil. 39, 205–207. https://doi.org/10.1007/BF00018060 (1973).
Lichtenthaler, H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods in Enzymology. Vol. 148, Academic Press, p. 350– https://doi.org/10.1016/0076-6879(87)48036-1
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).
Plewa, M. J., Hart, L. M. & Golden, D. E. A method for determining Guaiacol peroxidase activity in plant tissues. Plant. Physiol. 97 (2), 645–649. https://doi.org/10.1104/pp.97.2.645 (1991).
Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22, 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 (1981).
Dhindsa, R. S., Plumb–Dhindsa, P. & Thorpe, T. A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101. https://doi.org/10.1093/jxb/32.1.93 (1981).
Nicoli, M. C., Elizable, B. E., Piotti, A. & Lerici, C. R. Effect of sugar and Maillard reaction products on polyphenol oxidase and peroxidase activity in food. J. Food Biochem. 15, 169–184. https://doi.org/10.1111/j.1745-4514.1991.tb00153.x (1991).
Campbell, A. R. & Plank, C. S. Measurement of ion concentrations using atomic absorption spectrometry. Anal. Chem. J. 12 (3), 215–219 (1998).
Yang, Z. & Guo, Y. Plant salt response: perception, signaling, and tolerance. Front. Plant. Sci. 9, 1069. https://doi.org/10.3389/fpls.2022.1053699 (2018).
Hanin, M., Ebel, C., Ngom, M., Laplaze, L. & Masmoudi, K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant. Sci. 7, 1787. https://doi.org/10.3389/fpls.2016.01787 (2016).
Chantre Nongpiur, R., Singla–Pareek, L., Pareek, A. & S. & Genomics approaches for improving salinity stress tolerance in crop plants. Curr. Genomics. 17, 343–357. https://doi.org/10.2174/1389202917666160331202517 (2016).
Matějovič, M. et al. Hlásná čepková, P. Evaluation of the effect of low–temperature plasma treatment on seed germination of long–term stored genetic resources. Agronomy 14, 1918. https://doi.org/10.3390/agronomy14091918 (2024).
Ďurčányová, S. et al. Efficacy comparison of three atmospheric pressure plasma sources for soybean seed treatment: plasma characteristics, seed properties, germination. Plasma Chem. Plasma Process.. 20, e2400037. https://doi.org/10.1007/s11090-023-10387-y (2023).
Štěpánová, V., Henselová, M., Martinka, M. & Zahoranová, A. Effect of plasma activated water on seed germination and early growth of plants. Plasma Chem. Plasma Process. 38 (5), 969–988. https://doi.org/10.1007/s11090-018-9892-0 (2018).
Benabderrahim, M. A., Bettaieb, I., Hannachi, H., Rejili, M. & Dufour, T. Cold plasma treatment boosts barley germination and seedling vigor: insights into soluble sugar, starch, and protein modifications. J. Cereal Sci. 116, 103852. https://doi.org/10.1016/j.jcs.2024.103852 (2024).
Shilpa, B., Priya, P. B., Pallavi, M. & Rao, P. J. M. Effect of cold plasma treatment on seed quality parameters under cold stress in Oryza sativa L. J. Exp. Agric. Int. 46, 943–953. https://doi.org/10.9734/jeai/2024/v46i82781 (2024).
Bormashenko, E., Grynyov, R., Bormashenko, Y. & Drori, E. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci. Rep. 2, 741. https://doi.org/10.1038/srep00741 (2012).
Recek, N. et al. Germination and growth of plasma–treated maize seeds planted in fields and exposed to realistic environmental conditions. Int. J. Mol. Sci. 24, 6868. https://doi.org/10.3390/ijms24076868 (2023).
Nešković, N. et al. Advancements in plasma agriculture: insights into seed germination, Vigor and stress resilience. Int. J. Mol. Sci. 24, 15093. https://doi.org/10.3390/ijms242015093 (2023).
Kesawat, M. S. et al. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules—current perspectives and future directions. Plants 12 (4), 864. https://doi.org/10.3390/plants12040864 (2023).
Raza, A. et al. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 11 (8), 1015. https://doi.org/10.3390/plants8020034 (2022).
Balasubramaniam, T., Shen, G., Esmaeili, N. & Zhang, H. Plants’ response mechanisms to salinity stress. Plants 12, 2253. https://doi.org/10.3390/plants12122253 (2023).
Miller, G., Suzuki, N., Ciftci-Yılmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant. Cell. Environ. 33 (4), 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x (2010).
Ahmad, R. et al. Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches. 191–205 (Springer, https://doi.org/10.1007/978-3-030-06118-0_8. (2019).
Poolyarat, N. et al. Germination, physicochemical properties, and antioxidant enzyme activities in Kangkong (Ipomoea aquatica Forssk.) seeds as affected by dielectric barrier discharge plasma. Horticulturae 9 (12), 1269. https://doi.org/10.3390/horticulturae9121269 (2023).
Acharya, B. R., Gill, S. P., Kaundal, A. & Sandhu, D. Strategies for combating plant salinity stress: the potential of plant growth–promoting microorganisms. Front. Plant. Sci. 15, 1406913. https://doi.org/10.3389/fpls.2024.1406913 (2024).
Gupta, B. & Huang, B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. 701596 (2014). (2014). https://doi.org/10.1155/2014/701596
Flowers, T. J. & Colmer, T. D. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115 (3), 509–519. https://doi.org/10.1093/aob/mcu267 (2015).
Ghasempour, S., Ghanbari Jahromi, M., Mousavi, A. & Iranbakhsh, A. Seed priming with cold plasma, iron and manganese nanoparticles modulates salinity stress in hemp (Cannabis sativa L.) by improving germination, growth and biochemical attributes. Environ. Sci Pollut Res. Int. 31, 65315–65327. https://doi.org/10.1007/s11356-024-35590-y (2024).
Kavi Kishor, P. B. & Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant. Cell. Environ. 37, 300–311. https://doi.org/10.1111/pce.12157 (2014).
Renzetti, M., Funck, D. & Trovato, M. Proline and ROS: a unified mechanism in plant development and stress response? Plants 14, 2. https://doi.org/10.3390/plants14010002 (2024).
Guo, Q. et al. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep. 7, 16680. https://doi.org/10.1038/s41598-017-16944-8 (2017).
Mohajer, S., Hajihashemi, S., Amooaghaie, R. & Mirzaee, M. Cold plasma seed treatment improves antioxidant enzyme activity and seedling growth in soybean. BMC Plant. Biol. 24, 208. https://doi.org/10.1186/s12870-024-04961-5 (2024).
Atta, K. et al. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Front. Plant. Sci. 14, 1241736. https://doi.org/10.3389/fpls.2023.1241736 (2023).
Li, Y., Zeng, H., Xu, F., Yan, F. & Xu, W. H⁺–ATPases in plant growth and stress responses. Annu. Rev. Plant. Biol. 73, 495–523. https://doi.org/10.1146/annurev-arplant-102820-114551 (2022).
Jiang, L., Zhao, S., Wang, T. & Ma, F. Plasma membrane H⁺–ATPases in plant responses to abiotic stress. J. Genet. Genomics. 49, 289–301. https://doi.org/10.1016/j.jgg.2022.05.007 (2022).