Maue, R. N. Recent historically low global tropical cyclone activity. Geophys. Res. Lett. 38, 673–684 (2001).


Google Scholar
 

Xu, P. et al. Structural changes in the Pacific–Japan pattern in the late 1990s. J. Clim. 32, 607–621 (2019).


Google Scholar
 

Horinouchi, T. et al. Moisture supply, jet, and silk-road wave train associated with the prolonged heavy rainfall in Kyushu, Japan in early July 2020. Sci. Online Lett. Atmos. 17, 1–8 (2021).


Google Scholar
 

Kossin, J. P., Olander, T. L. & Knapp, K. R. Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 26, 9960–9976 (2013).


Google Scholar
 

Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).

CAS 

Google Scholar
 

Kossin, J. P., Emanuel, K. A. & Camargo, S. J. Past and projected changes in western North Pacific tropical cyclone exposure. J. Clim. 29, 5725–5739 (2016).


Google Scholar
 

Yokoi, S. & Takayabu, Y. N. Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. J. Meteorol. Soc. Jpn. 87, 525–538 (2009).


Google Scholar
 

Murakami, H. et al. Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Clim. 25, 3237–3260 (2012).


Google Scholar
 

Park, D. S. R., Ho, C. H. & Kim, J. H. Growing threat of intense tropical cyclones to East Asia over the period 1977–2010. Environ. Res. Lett. 9, 014008 (2014).


Google Scholar
 

Sharmila, S. & Walsh, K. Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nat. Clim. Change 8, 730–736 (2018).


Google Scholar
 

Zhan, R. & Wang, Y. Weak tropical cyclones dominate the poleward migration of the annual mean location of lifetime maximum intensity of Northwest Pacific tropical cyclones since 1980. J. Clim. 30, 6873–6882 (2017).


Google Scholar
 

Daloz, A. S. & Camargo, S. J. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?. Clim. Dyn. 50, 705–715 (2018).


Google Scholar
 

Feng, X. B., Klingaman, N. P. & Hodges, K. L. Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality. Nat. Clim. 12, 1–11 (2021).


Google Scholar
 

Song, J. & Klotzbach, P. J. What has controlled the poleward migration of annual averaged location of tropical cyclone lifetime maximum intensity over the western North Pacific since 1961?. Geophys. Res. Lett. 45, 1148–1156 (2018).


Google Scholar
 

Wang, R. & Wu, L. Influence of track changes on the poleward shift of LMI location of western North Pacific tropical cyclones. J. Clim. 32, 8437–8445 (2019).


Google Scholar
 

Zhao, H. et al. Interannual and interdecadal drivers of meridional migration of western North Pacific tropical cyclone lifetime maximum intensity location. J. Clim. 35, 2709–2722 (2022).


Google Scholar
 

Feng, X. B. Translation speed slowdown and poleward migration of western North Pacific tropical cyclones. npj Clim. Atmos. Sci. 7, 196 (2024).


Google Scholar
 

Sun, Y. et al. A recent reversal in the poleward shift of western North Pacific tropical cyclones. Geophys. Res. Lett. 45, 9944–9952 (2018).


Google Scholar
 

Guo, Y. P. & Tan, Z. M. Influence of track change on the inconsistent poleward migration of typhoon activity. J. Geophys. Res. Atmos. 127, e2022JD036640 (2022).


Google Scholar
 

Lin, J., Lee, C. Y., Camargo, S. J. & Sobel, A. Poleward migration of the latitude of maximum tropical cyclone intensity—forced or natural? J. Clim. 37, 5453–5463 (2024).


Google Scholar
 

Dong, B. & Dai, A. The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Clim. Dyn. 45, 2667–2681 (2015).


Google Scholar
 

Li, W., Li, L. & Deng, Y. Impact of the interdecadal Pacific oscillation on tropical cyclone activity in the North Atlantic and eastern North Pacific. Sci. Rep. 5, 12358 (2015).

CAS 

Google Scholar
 

Zhao, J. et al. Distinct modulations of northwest Pacific tropical cyclone precipitation by Atlantic multidecadal oscillation and interdecadal Pacific oscillation. Geophys. Res. Lett. 51, e2023GL107749 (2024).


Google Scholar
 

Knight, J. R., Folland, C. K. & Scaife, A. A. Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett. 33, L17706 (2006).


Google Scholar
 

Klotzbach, P. J. The influence of El Niño-Southern Oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J. Clim. 24, 721–731 (2011).


Google Scholar
 

Song, K. et al. Influence of the Atlantic multidecadal oscillation on the rapid intensification magnitude of tropical cyclones over the western North Pacific. J. Clim. 37, 689–730 (2024).


Google Scholar
 

Zhao, J., Zhan, R., Wang, Y. & Xu, H. Contribution of the interdecadal Pacific oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Clim. 31, 8211–8224 (2018).


Google Scholar
 

Tennille, S. A. & Ellis, K. N. Spatial and temporal trends in the location of the lifetime maximum intensity of tropical cyclones. Atmosphere 8, 198 (2017).


Google Scholar
 

Manganello, J. V. et al. Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J. Clim. 25, 3867–3893 (2012).


Google Scholar
 

Strachan, J. et al. Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J. Clim. 26, 133–152 (2013).


Google Scholar
 

Camargo, S. J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Clim. 26, 9880–9902 (2013).


Google Scholar
 

Moon, Y. et al. Azimuthally averaged wind and thermodynamic structures of tropical cyclones in global climate models and their sensitivity to horizontal resolution. J. Clim. 33, 1575–1595 (2019).


Google Scholar
 

Moon, I. J., Kim, S. H., Klotzbach, P. & Chan, J. C. L. Roles of interbasin frequency changes in the poleward shifts of the maximum intensity location of tropical cyclones. Environ. Res. Lett. 10, 104004 (2015).


Google Scholar
 

Zhang, W. et al. Tropical cyclone precipitation in the HighResMIP atmosphere-only experiments of the PRIMAVERA Project. Clim. Dyn. 57, 253–273 (2021).


Google Scholar
 

Huang, H., Patricola, C. M. & Collins, W. D. The influence of ocean coupling on simulated and projected tropical cyclone precipitation in the HighResMIP-PRIMAVERA simulations. Geophys. Res. Lett. 48, e2021GL094801 (2021).


Google Scholar
 

Liu, J. C., Yuan, C. X. & Luo, J. J. Impacts of model resolution on responses of western North Pacific tropical cyclones to ENSO in the HighResMIP-PRIMAVERA ensemble. Front. Earth Sci. 11, 1169885 (2023).


Google Scholar
 

Lin, J., Lee, C. Y., Camargo, S. J. & Sobel, A. Poleward migration of the latitude of maximum tropical cyclone intensityforcedor natural? J. Clim. 37, 5453–5463 (2024).


Google Scholar
 

Haarsma, R. et al. HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR-description, model computational performance and basic validation. Geosci. Model Dev. Discuss. 2020, 1–37 (2020).


Google Scholar
 

Roberts, M. J. et al. Impact of model resolution on tropical cyclone simulation using the HighResMIP-PRIMAVERA multi-model ensemble. J. Clim. 33, 2557–2583 (2020).


Google Scholar
 

Cherchi, A. et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Clim. 11, 185–209 (2019).


Google Scholar
 

Voldoire, A. et al. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).


Google Scholar
 

Roberts, M. J. et al. Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments. Geosci. Model Dev. 12, 4999–5028 (2019).


Google Scholar
 

Haarsma, R. J. et al. High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).


Google Scholar
 

Gutjahr, O. et al. Max Planck Institute Earth System Model (MPI-ESM1. 2) for the high-resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).

CAS 

Google Scholar
 

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).


Google Scholar
 

Li, H. et al. Subtropical high affects interdecadal variability of tropical cyclone genesis in the South China Sea. J. Geophys. Res. Atmos. 124, 6379–6392 (2019).


Google Scholar
 

Li, H. et al. Unusual tropical cyclone tracks under the influence of upper-tropospheric cold low. Mon. Weather Rev. 152, 39–58 (2024).


Google Scholar
 

Shimada, U. Variability of environmental conditions for tropical cyclone rapid intensification in the western North Pacific. J. Clim. 35, 4437–4454 (2022).


Google Scholar
 

Walsh, K. J. E. et al. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Change 7, 65–89 (2016).


Google Scholar
 

Ose, T., Song, Y. & Kitoh, A. Sea surface temperature in the South China Sea an index for the Asian monsoon and ENSO system. J. Meteorol. Soc. Jpn. 75, 1091–1107 (1997).


Google Scholar
 

Ose, T. Future precipitation changes during summer in East Asia and model dependence in high-resolution MRI-AGCM experiments. Hydrol. Res. Lett. 11, 168–174 (2017).


Google Scholar
 

Ose, T. Characteristics of future changes in summertime East Asian monthly precipitation in MRI-AGCM global warming experiments. J. Meteorol. Soc. Jpn. 97, 317–335 (2019).


Google Scholar
 

Ose, T., Takaya, Y., Maeda, S. & Nakaegawa, T. Resolution of summertime East Asian pressure pattern and southerly monsoon wind in CMIP5 multi-model future projections. J. Meteorol. Soc. Jpn. 98, 927–944 (2020).


Google Scholar
 

Ose, T., Endo, H., Takaya, Y., Maeda, S. & Nakaegawa, T. Robust and uncertain sea-level pressure patterns over summertime East Asia in the CMIP6 multi-model future projections. J. Meteorol. Soc. Jpn. 100, 631–645 (2022).


Google Scholar
 

Ose, T., Endo, H. & Nakaegawa, T. Emergence of future sea-level pressure patterns in recent summertime East Asia. J. Meteorol. Soc. Jpn. 102, 265–283 (2024).


Google Scholar
 

Boisséson, E. D. et al. How robust is the recent strengthening of the tropical Pacific trade winds?. Geophys. Res. Lett. 41, 4398–4405 (2014).


Google Scholar
 

Ma, S. & Zhou, T. Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Clim. 29, 3097–3118 (2016).


Google Scholar
 

Li, Y. et al. Long-term trend of the tropical Pacific trade winds under global warming and its causes. J. Geophys. Res. Oceans 124, 2626–2640 (2019).


Google Scholar
 

Zhao, M. & Held, I. M. TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Clim. 25, 2995–3009 (2012).


Google Scholar
 

Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 129, 569–585 (2020).


Google Scholar
 

Laprise, R. The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Weather Rev. 129, 569–585 (1992).


Google Scholar
 

Giorgi, F., Jones, C. & Asrar, G. R. Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull. 58, 175 (2009).


Google Scholar
 

Wang, Y., Satoh, M., Zhan, J., Zhao, J. & Xie, S. P. Tropical sea surface warming patterns and tropical cyclone activity: a review. Adv. Atmos. Sci 42, 1996–2017 (2025).


Google Scholar
 

Roberts, C. D. et al. ECMWF ECMWF-IFS-HR model output prepared for CMIP6 HighResMIP. Earth Syst. Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.2461 (2017).

Tang, Y., Huangfu, J., Huang, R. & Chen, W. Simulation and projection of tropical cyclone activities over the western North Pacific by CMIP6 HighResMIP. J. Clim. 35, 7771–7794 (2022).


Google Scholar
 

Li, Z. & Zhou, W. Poleward migration of tropical cyclones over the western North Pacific in the CMIP6-HighResMIP models constrained by observations. npj Clim. Atmos. Sci. 7, 161 (2024).

CAS 

Google Scholar
 

Haarsma, R. J. et al. High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).


Google Scholar
 

Roberts, M. J. et al. Projected future changes in tropical cyclones using the CMIP6 HighResMIP multi-model ensemble. Geophys. Res. Lett. 47, 1–12 (2020).


Google Scholar
 

Hong, S. Y., Dudhia, J. & Chen, S. H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 132, 103–120 (2004).


Google Scholar
 

Hong, S. Y., Noh, Y. & Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).


Google Scholar
 

Paulson, C. A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9, 857–861 (1970).


Google Scholar
 

Chen, F. & Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001).


Google Scholar
 

Kain, J. S. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181 (2004).


Google Scholar
 

Collins, W. D. et al. Description of the NCAR community atmosphere model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+ Str. 226, 1326–1334 (2004).


Google Scholar
 

Hodges, K., Cobb, A. & Vidale, P. L. How well are tropical cyclones represented in reanalysis datasets?. J. Clim. 30, 5243–5264 (2017).


Google Scholar
 

Zhao, J. et al. Untangling impacts of global warming and Interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density. Sci. Adv. 6, eaba6813 (2020).


Google Scholar
 

Lian, T. Uncertainty in detecting trend: a new criterion and its applications to global SST. Clim. Dyn. 49, 2881–2893 (2017).


Google Scholar
 

Li, Y. et al. Recent increases in tropical cyclone rapid intensification events in global offshore regions. Nat. Commun. 14, 5167 (2023).

CAS 

Google Scholar
 

He, J. H., Zhou, B., Wen, M. & Li, F. Vertical circulation structure, interannual variation features and variation mechanism of western pacific subtropical high. Adv. Atmos. Sci. 18, 497–510 (2001).


Google Scholar
 

Emanuel, K. A. & Nolan, D. S. Tropical cyclone activity and the global climate system. 26th. Conf. Hurric. Trop. Meteorol. 10A.2, 240–241 (2004).


Google Scholar
 

Wang, B. & Murakami, H. Dynamic genesis potential index for diagnosing present-day and future global tropical cyclone genesis. Environ. Res. Lett. 15, 114008 (2020).

CAS 

Google Scholar
 

Camargo, S. J. et al. Characteristics of model tropical cyclone climatology and the large-scale environment. J. Clim. 33, 4463–4487 (2020).


Google Scholar
 

Zhao, H. et al. On the relationship between eastern China aerosols and western North Pacific tropical cyclone activity. Atmos. Res. 284, 106604 (2023).


Google Scholar
 

Jian, D. et al. Projected poleward migration of western North Pacific tropical cyclone genesis. Geophys. Res. Lett. 51, e2024GL110031 (2024).


Google Scholar
 

Gutiérrez, J. M. et al. Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Clim. 26, 171–188 (2013).


Google Scholar
 

Gutiérrez, J. M. et al. An intercomparison of a large ensemble of statistical downscaling methods over Europe: results from the VALUE perfect predictor cross-validation experiment. Int. J. Climatol. 39, 3750–3785 (2019).


Google Scholar
 

Fox, J. & Monette, G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 87, 178–183 (1992).


Google Scholar